Аннотация:
С произвольным графом $G$, имеющим $n$ вершин и $m$ рёбер, и с произвольным натуральным числом $p$ мы ассоциируем естественным образом некоторый многочлен $R(x_1,\dots,x_n)$ с целыми коэффициэнтами такой, что количество правильных раскрасок вершин графа $G$ в $p$ цветов равно $p^{m-n}R(0,\dots,0)$.
Кроме того, с каждым максимальным плоским графом $G$ мы ассоциируем несколько многочленов с целыми коэффициентами таких, что количество правильных раскрасок рёбер графа $G$ в 3 цвета может быть вычислено разными способами по коэффициенам любого из этих многочленов. Библ. – 2 назв.