RUS  ENG
Полная версия
ЖУРНАЛЫ // Записки научных семинаров ПОМИ // Архив

Зап. научн. сем. ПОМИ, 2009, том 373, страницы 104–123 (Mi znsl3577)

Эта публикация цитируется в 7 статьях

О кольце локальных инвариантов пары запутанных кубитов

В. П. Гердтa, Ю. Г. Палийb, А. М. Хведелидзеc

a Объединенный институт ядерных исследований, г. Дубна, Россия
b Институт прикладной физики, Академия наук Р. Молдовы, г. Кишинев, Республика Молдова
c Математический институт им. А. Размадзе, г. Тбилиси, Грузия

Аннотация: Проблема классификации корреляций в квантово-механических системах, представляющих объединение $r$-подсистем с соответственно $n_1,n_2,\dots,n_r$ – уровнями, связана с математической задачей классификации пространства орбит присоединенного действия группы $\mathrm{SU}(n_1)\otimes\mathrm{SU}(n_2)\otimes\dots\otimes\mathrm{SU}(n_r)$ на так называемом пространстве операторов плотности, пространстве неотрицательно определенных эрмитовых матриц порядка $N=n_1+n_2+\dots+n_r$. Из-за свойства неотрицательной определенности пространство действия группы представляет собой полуалгебраическое многообразие, $\mathfrak P_+$. По этой причине применение стандартных методов описания орбит в рамках классической теории инвариантов, адаптированных к действиям на линейных пространствах, требует дополнительной модификации. В настоящей работе данная проблематика исследуется на примере системы двух кубитов ($n_1=n_2=2$). Сформулировано условие неотрицательности оператора плотности в виде алгебраических неравенств на инварианты присоединенного действия группы $\mathrm{SU}(2)\otimes\mathrm{SU}(2)$. Предложен базис кольца инвариантов $\mathbb C[\mathbb P_+]^{\mathrm{SU}(2)\otimes\mathrm{SU}(2)}$, содержащий минимальное число инвариантов, связанных необходимыми неравенствами. Библ. – 32 назв.

Ключевые слова: полиномиальные инварианты, пространство перепутанности, разложение Хиронаки.

УДК: 517.986

Поступило: 21.09.2009


 Англоязычная версия: Journal of Mathematical Sciences (New York), 2010, 168:3, 368–378

Реферативные базы данных:


© МИАН, 2024