RUS  ENG
Полная версия
ЖУРНАЛЫ // Записки научных семинаров ПОМИ // Архив

Зап. научн. сем. ПОМИ, 2010, том 374, страницы 58–81 (Mi znsl3594)

Эта публикация цитируется в 3 статьях

Составная модель обобщенного осциллятора. I

В. В. Борзовa, Е. В. Дамаскинскийb

a Санкт-Петербургский государственный университет телекоммуникаций им. М. А. Бонч-Бруевича, Санкт-Петербург, Россия
b Военный инженерно-технический институт, Санкт-Петербург, Россия

Аннотация: Исследуется задача реализации заданного обобщенного осциллятора посредством системы из $N$ обобщенных осцилляторов другого типа. Рассмотрен обобщенный осциллятор, связанный с фиксированной системой ортогональных полиномов, которые определяются трехчленным рекуррентным соотношением и соответствующей трехдиагональной матрицей Якоби $J$. Случай $N=2$ был изучен в предыдущей работе авторов. Оказадось, что мера ортогональности исходной системы полиномов симметрична относительно поворотов на $\pi$. В настоящей работе рассмотрен случай $N=3$. Доказано, что такая задача допускает решение только в двух случаях. В первом матрица Якоби, связанная с заданным “составным” обобщенным осциллятором имеет блочно-диагональный вид и состоит из однотипных блоков размера $3\times3$. Более интересен второй случай, когда матрица Якоби не имеет блочного вида. Для этой матрицы построена соответствующая система ортогональных многочленов которая разбивается на три серии, связанные с многочленами Чебышева второго рода. Основным результатом работы является решение проблемы моментов для соответствующей матрицы Якоби. При этом оказывается, что построенная мера обладает симметрией относительно поворотов на $2\pi/3$. Библ. – 6 назв.

Ключевые слова: обобщенный осциллятор, ортогональные многочлены, проблема моментов.

УДК: 517.9

Поступило: 01.03.2010


 Англоязычная версия: Journal of Mathematical Sciences (New York), 2010, 168:6, 789–804

Реферативные базы данных:


© МИАН, 2024