RUS  ENG
Полная версия
ЖУРНАЛЫ // Записки научных семинаров ПОМИ // Архив

Зап. научн. сем. ПОМИ, 2010, том 383, страницы 33–52 (Mi znsl3870)

Эта публикация цитируется в 6 статьях

Скорость убывания констант в неравенствах типа Джексона в зависимости от порядка модуля непрерывности

О. Л. Виноградов, В. В. Жук

С.-Петербургский государственный университет, Санкт-Петербург, Россия

Аннотация: Пусть $\mathbf E_\sigma$ – множество целых функций степени не выше $\sigma$, $\delta^m_h(f)$ – центральная разность, $\omega_m(f,h)_P$ – модуль непрерывности порядка $m$ в $L_p(\mathbb R)$, $W_{h,2r}(f)=\frac{(-1)^r}{C_{2r}^rh}\int_{-h}^h\delta_t^{2r}(f)\Bigl(1-\frac{|t|}h\Bigr)\,dt$, $\mu_{2r}=\biggl(\frac8{\pi^2}\sum_{\substack{1\le j\le r\\ j\text{ нечетно}}}\frac{C_{2r}^{r+j}}{C_{2r}^r}\frac1{j^2}\biggr)^{1/2}$. Для $p\in[1,+\infty]$, $r\in\mathbb N$, $\sigma>0$, $\alpha>\mu_{2r}$, $h=\frac{\alpha\pi}\sigma$ построен оператор свертки $Q_{\sigma,h,2r}\colon L_p(\mathbb R)\to\mathbf E_\sigma$ такой, что для любой $f\in L_p(\mathbb R)$
\begin{eqnarray*} \|f-Q_{\sigma,h,2r}(f)\|_p&\le\left(\cos\frac{\pi\mu_{2r}}{2\alpha}\right)^{-1}\|W_{h,2r}(f)\|_p,\\ \|f-Q_{\sigma,h,2r}(f)\|_p&\le\left(\cos\frac{\pi\mu_{2r}}{2\alpha}\right)^{-1}\frac1{C_{2r}^r}\omega_{2r}(f,h)_p. \end{eqnarray*}
При $p=1,\infty$, $\alpha=1$ константы в первом неравенстве нельзя уменьшить, даже если заменить левую часть на наилучшее приближение и ограничиться функциями, ортогональными $\mathbf E_\sigma$. Как частные случаи, получаются оценки приближений периодических функций. Библ. – 19 назв.

Ключевые слова: наилучшее приближение, модуль непрерывности, точные константы.

УДК: 517.5

Поступило: 06.09.2010



© МИАН, 2024