Аннотация:
При построении асимптотических решений уравнений, описывающих волны, сосредоточенные вблизи движущихся линий или поверхностей, центральную роль играют специальные (тоже асимптотические) решения уравнений Гамильтона–Якоби. Эти решения вещественны на некоторой поверхности и комплексны вне ее. Решения такого типа впервые рассматривал В. П. Маслов ([1, часть 1]). Для того, чтобы дать математическое описание некоторых, не рассматривавшихся ранее типов волн, авторы снова возвращаются к решениям уравнений Гамильтона–Якоби. Для тех приложений, которые имеются в виду, требуется детальное изложение построений, ведущих к искомому решению уравнения Гамильтона–Якоби в нужной форме. Такому изложению и посвящена настоящая статья. Библ. – 3 назв.