Аннотация:
Исследуется одномерная модель Хаббарда с притяжением. Вычислена свободная энергия как функция плотности (химического потенциала) в окрестности полузаполненной зоны. Для модели на решетке конечной длины $N$ получено разложение энергии элементарных возбуждений с точностью до $(N^2\ln N)^{-1}$. Явное выражение для свободной энергии и спектра элементарных возбуждений как функции внешних полей или объема $N$ необходимо для исследования асимптотического поведения корреляционных функций. Библ. – 12 назв.