RUS  ENG
Полная версия
ЖУРНАЛЫ // Записки научных семинаров ПОМИ // Архив

Зап. научн. сем. ПОМИ, 2014, том 421, страницы 68–80 (Mi znsl5750)

Эта публикация цитируется в 3 статьях

Describing orbit space of global unitary actions for mixed qudit states

[Описание пространства орбит глобальной унитарной группы, действующей на смешанные состояния кудитов]

V. P. Gerdta, A. M. Khvedelidzebac, Yu. G. Paliida

a Laboratory of Information Technologies, Joint Institute for Nuclear Research, Dubna, Russia
b Tbilisi State University, A. Razmadze Mathematical Institute, Tbilisi, Georgia
c School of Natural Sciences, University of Georgia, Tbilisi, Georgia
d Institute of Applied Physics, Moldova Academy of Sciences, Chisinau, Republic of Moldova

Аннотация: Соотношение унитарной $\mathrm U(d)$-эквивалентности между элементами пространства $\mathfrak P_+$ смешанных состояний $d$-мерной квантовой системы определяет пространство орбит $\mathfrak P_+/\mathrm U(d)$ и обеспечивает его описание в терминах кольца $\mathbb R[\mathfrak P_+]^{\mathrm U(d)}$, $\mathrm U(d)$-инвариантных многочленов. Мы доказываем, что полуалгебраическая структура пространства $\mathfrak P_+/\mathrm U(d)$ полностью определяется двумя основными свойствами матриц плотности: их положительной полуопределенностью и эрмитовостью. В частности, мы показываем, что неравенства Процесси–Шварца для элементов базиса кольца инвариантов для $\mathbb R[\mathfrak P_+]^{\mathrm U(d)}$, определяющие пространство орбит, выполняются тождественно для всех элементов $\mathfrak P_+$. Библ. – 9 назв.

Ключевые слова: матрица плотности, кудит, унитарная группа, пространство орбит, полиномиальные инварианты, идеал сизигий, полуалгабраическая структура.

УДК: 512.81+530.145

Поступило: 12.11.2013

Язык публикации: английский


 Англоязычная версия: Journal of Mathematical Sciences (New York), 2014, 200:6, 682–689

Реферативные базы данных:


© МИАН, 2024