RUS  ENG
Полная версия
ЖУРНАЛЫ // Записки научных семинаров ПОМИ // Архив

Зап. научн. сем. ПОМИ, 2019, том 484, страницы 165–184 (Mi znsl6866)

Мотивный аналог теоремы Сегала для пар (анонс)

А. Цыбышев

С.-Петербургский международный математический институт им. Л. Эйлера, наб. р. Фонтанки 27, 191023 С.-Петербург, Россия

Аннотация: В. Воеводский заложил основы машинерии распетливания мотивных пространств, чтобы дать новую конструкцию стабильной мотивной категории $SH(k)$, более дружелюбную для вычислений. Г. Гаркуша и И. Панин реализовали этот проект, опираясь на совместные работы с А. Ананьевским, А. Нешитовым и А. Дружининым. В частности, Г. Гаркуша и И. Панин доказали, что для любого бесконечного совершенного поля $k$ и любой $k$-гладкой схемы $X$ канонический морфизм мотивных пространств $C_*Fr(X)\to \Omega^{\infty}_{\mathbb{P}^1} \Sigma^{\infty}_{\mathbb{P}^1} (X_+)$ локально в топологии Нисневича является групповым пополнением. В настоящей работе формулируется обобщение этой теоремы на случай гладких пар $(X,U),$ в которой $X$$k$-гладкая схема, $U$ – ее открытая подсхема, пересекающая каждую компоненту $X$ по непустой подсхеме. Мы утверждаем, что в этом случае мотивное пространство $C_*Fr((X,U))$ является локально связным в топологии Нисневича и канонический морфизм мотивных пространств $C_*Fr((X,U))\to \Omega^{\infty}_{\mathbb{P}^1} \Sigma^{\infty}_{\mathbb{P}^1} (X/U)$ локально в топологии Нисневича является гомотопической эквивалентностью симплициальных множеств. Более того, утверждается, что если коразмерность $S=X-U$ в каждой компоненте $X$ больше, чем $r \geq 0,$ то симплициальный пучок $C_*Fr((X,U))$ локально $r$-связен. Для данных утверждений приводятся основные шаги доказательства, но важные технические моменты приводятся без доказательств. Данные детали доказательств будут опубликованы позже. Библ. – 15 назв.

Ключевые слова: теория $A^1$-гомотопий, фрейм-мотивы, распетливание, открытые пары, теорема о конусе.

УДК: 512.732

Поступило: 07.11.2019



© МИАН, 2024