Аннотация:
Исследуются многосеточные методы решения систем линейных алгебраических уравнений (СЛАУ), получаемых из семиточечной аппроксимации задачи Дирихле для эллиптического дифференциального уравнения второго порядка в параллелепипедальной расчетной области на регулярной сетке. Предлагаемые алгоритмы формулируются как специальные варианты итерационных процессов неполной факторизации в подпространствах Крылова с иерархической рекурсивной структурой векторов, соответствующей последовательности вложенных сеток и образующей блочно-трехдиагональное рекурсивное представление матрицы исходной алгебраической системы. Оптимизация скорости сходимости итерации осуществляется с использованием принципа компенсации, или согласования строчных сумм, а также путем конструирования симметричной последовательной блочной верхней релаксации. Произвольный $m$-сеточный метод определяется как рекурсивное применение двухсеточного. Рассмотрение алгоритмов производится для простоты для СЛАУ с матрицами стилтьесовского типа. Обсуждаются вопросы обобщения алгоритмов на задачи более широкого класса, в том числе, с несимметричными матрицами. Отметим также, что обобщение алгоритмов на несимметричные СЛАУ возможно путем применения предобусловленных методов полусопряженных направлений или обобщенных алгоритмов минимальных невязок. Библ. – 22 назв.
Ключевые слова:вложенные сетки, предобусловленные матрицы, подпространства Крылова, методы неполной факторизации.