RUS  ENG
Полная версия
ЖУРНАЛЫ // Записки научных семинаров ПОМИ // Архив

Зап. научн. сем. ПОМИ, 2022, том 519, страницы 114–151 (Mi znsl7304)

Эта публикация цитируется в 1 статье

Усреднение одномерного периодического эллиптического оператора на краю спектральной лакуны: операторные оценки в энергетической норме

А. А. Мишулович, В. А. Слоущ, Т. А. Суслина

С.-Петербургский государственный университет, Университетская наб., д. 7/9, 199034, С.-Петербург, Россия

Аннотация: В пространстве $L_2(\mathbb{R})$ рассматривается эллиптический дифференциальный оператор $A_{\varepsilon}$, $\varepsilon >0$, второго порядка вида
$$ A_{\varepsilon} = - \frac{d}{dx} g(x/\varepsilon) \frac{d}{dx} + \varepsilon^{-2} p({x}/\varepsilon) $$
с периодическими коэффициентами. Изучается поведение при малом $\varepsilon$ резольвенты оператора $A_{\varepsilon}$ в точке, близкой к краю спектральной лакуны. Получена аппроксимация рассматриваемой резольвенты по “энергетической” норме с погрешностью $O(\varepsilon)$. Аппроксимация описывается в терминах спектральных характеристик оператора на краю лакуны. Библ. – 22 назв.

Ключевые слова: периодические дифференциальные операторы, спектральная лакуна, усреднение, эффективный оператор, корректор, операторные оценки погрешности.

УДК: 517.928

Поступило: 29.10.2022



Реферативные базы данных:


© МИАН, 2024