RUS  ENG
Полная версия
ЖУРНАЛЫ // Журнал вычислительной математики и математической физики // Архив

Ж. вычисл. матем. и матем. физ., 2014, том 54, номер 10, страницы 1656–1677 (Mi zvmmf10102)

Две разностные схемы для численного решения уравнений максвелла для распространения ультра- и сверхнизкочастотных сигналов в волноводе Земля-ионосфера

О. И. Ахметов, В. С. Мингалев, И. В. Мингалев, О. В. Мингалев, Ю. В. Федоренко

184209 Апатиты, ул. Академгородок, 26а, Полярный геофизический ин-т Кольского научного центра РАН

Аннотация: Предложены две явные двухслойные по времени разностные схемы для численного решения уравнений Максвелла, предназначенные для моделирования распространения ультра- и сверхнизкочастотных электромагнитных сигналов (частота 200 Гц и ниже) с малой амплитудой в волноводе Земля-ионосфера с учетом тензорной проводимости ионосферы. В обеих схемах используется новый подход к аппроксимации по времени, который основан на представлении уравнений Максвелла в интегральной по времени форме. Пространственные производные в обеих схемах аппроксимируются с 4-м порядком точности. Первая схема использует уравнения для полей и имеет 2-й порядок точности по времени. Вторая схема использует уравнения для потенциалов и имеет 4-й порядок точности по времени. Сравнительные тестовые расчеты показали, что предложенные в данной работе схемы обладают рядом важных преимуществ по сравнению со схемами, использующими конечно-разностную аппроксимацию производных по времени, а также выявили лучшие свойства схемы для потенциалов по сравнению со схемой для полей. Библ. 14. Фиг. 3.

Ключевые слова: разностные схемы, уравнения Максвелла, волновод Земля-ионосфера, низкочастотные электромагнитные сигналы, тензор проводимости ионосферы.

УДК: 519.626

Поступила в редакцию: 13.05.2013
Исправленный вариант: 28.03.2014

DOI: 10.7868/S0044466914100044


 Англоязычная версия: Computational Mathematics and Mathematical Physics, 2014, 54:10, 1597–1617

Реферативные базы данных:


© МИАН, 2024