Аннотация:
Предлагается рандомизированная онлайн версия метода зеркального спуска. Отличие от имеющихся версий заключается в способе рандомизации. Рандомизация выводится не на этапе вычисления субградиента функции, как это повсеместно принято, а на этапе проектирования на единичный симплекс. В результате получается покомпонентный субградиентный спуск со случайным выбором компоненты, допускающий онлайн интерпретацию. Это наблюдение, например, позволило единообразно проинтерпретировать результаты о взвешивании экспертных решений и предложить наиболее эффективный способ поиска равновесия в антагонистической матричной игре с разреженной матрицей. Библ. 34.