Аннотация:
Предлагается численный метод для решения систем интегродифференциальных уравнений типа Фредгольма. Метод основан на разложении искомого решения по мультивейвлетам Альперта (cм. Alpert et all. J. Comput. Phys. 2002. V. 182. P. 149–190). Используя операционную матрицу интегрирования и матрицу вейвлетного преобразования, система интегродифференциальных уравнений приводится к системе алгебраических уравнений большого размера. При помощи усечения этой системы в работе получена новая разреженная система, к которой можно применить метод GMRES для ее численного решения. Приводятся примеры, которые показывают эффективность используемого метода для численного решения интегродифференциальных уравнений. Указан способ численной реализации метода. Библ. 30.
Ключевые слова:метод мультивейвлетов Альперта, численное решение интегродифференциальных уравнений Фредгольма, усечение большой системы алгебраических уравнений, метод операционных матриц, метод GMRES.