Аннотация:
Рассматривается модель неоклассического (экономического) роста. Нелинейное уравнение Рэмзи, моделирующее динамику капитала, в случае производственной функции Кобба–Дугласа сводится к линейному дифференциальному уравнению заменой Бернулли. Это облегчает поиск решения в задаче оптимального роста с логарифмическими предпочтениями. Исследование посвящено решению соответствующей задачи оптимального управления с бесконечным горизонтом времени. Рассматривается векторное поле гамильтоновой системы принципа максимума Понтрягина с учетом ограничений на управление. Доказано существование двух альтернативных установившихся состояний в зависимости от ограничений. Предложенный алгоритм построения траекторий роста сочетает в себе методы программного управления и регулирования по принципу обратной связи. Для некоторых значений ограничений и начальных условий оптимальное решение получено в замкнутой форме. Продемонстрировано влияние технологического изменения на динамику экономического равновесия. Результаты подтверждены компьютерными вычислениями. Библ. 20. Фиг. 6.
Ключевые слова:математическое моделирование, задача оптимального роста, принцип максимума Понтрягина, установившиеся состояния.