Аннотация:
Рассматриваются случайные процессы, принимающие значения в группе ортогональных преобразований конечномерного евклидова пространства и являющиеся некоммутативными аналогами процессов с независимыми приращениями. Такие процессы определяются как пределы некоммутативных аналогов случайных блужданий в группе ортогональных преобразований. Эти случайные блуждания представляют собой композиции независимых случайных ортогональных преобразований евклидова пространства. В частности, таким образом определяются некоммутативные аналоги диффузионных процессов со значениями в группе ортогональных преобразований. Для этих процессов получены обратные уравнения Колмогорова. Библ. 16.
Ключевые слова:случайный линейный оператор, случайная операторнозначная функция, операторнозначный случайный процесс, закон больших чисел, уравнение Колмогорова.
УДК:
517.63
Поступила в редакцию: 07.02.2020 Исправленный вариант: 20.02.2020 Принята в печать: 09.06.2020