Аннотация:
Основу настоящей работы составляет использование современных методов асимптотического анализа в задачах реакция-диффузия-адвекция с целью описания классического периодического решения погранслойного типа одной сингулярно возмущенной задачи для нелинейного уравнения диффузии с адвекцией. Рассматривается построение асимптотического приближения произвольного порядка точности такого решения и обоснование формальных построений. Доказывается теорема единственности, устанавливаются асимптотическая устойчивость по Ляпунову и локальная область притяжения периодического решения погранслойного типа. В статье обсуждается одно из приложений этого результата в задачах атмосферной диффузии, а именно: математическое моделирование процессов переноса и химической трансформации антропогенных примесей в пограничном слое атмосферы с учетом периодических, например суточных или сезонных, изменений. Развиваемые аналитические алгоритмы, в том числе для данной задачи, составят основу для нового метода расчета ежедневно корректируемых эмиссионных потоков антропогенных примесей от городских источников, что позволит разработать улучшенные методики определения ежедневных интегральных эмиссий со всей территории города или городской агломерации, основанные на применении аналитических решений модельных задач в сочетании с информацией, полученной на сети станций мониторинга атмосферы. Библ. 15. Фиг. 1.
Ключевые слова:задачи атмосферной диффузии, периодические задачи типа реакция-диффузия-адвекция, нелинейное уравнение диффузии примесей, антропогенное загрязнение атмосферы, фотохимические процессы в атмосфере.
УДК:517.928
Поступила в редакцию: 31.07.2019 Исправленный вариант: 23.08.2019 Принята в печать: 18.11.2019