Аннотация:
Предложена математическая модель пандемии COVID-19, сохраняющая оптимальный баланс между адекватностью описания пандемии в модели SIR и простотой практических оценок. В качестве базовых уравнений модели дан вывод двухпараметрических нелинейных обыкновенных дифференциальных уравнений первого порядка с запаздыванием по времени, пригодных для описания любого сообщества (страна, город и т.п.). Приведенные примеры моделирования развития пандемии в зависимости от параметров: $\tau $ – время возможного распространения инфекции одним вирусоносителем и $\alpha $ – вероятность инфицирования здорового члена популяции при контакте с инфицированным в единицу времени, например за день, находится в качественном согласии с динамикой пандемии COVID-19. Дано сравнение предложенной модели с моделью SIR. Библ. 18. Фиг. 7.
Ключевые слова:математическая модель, пандемия COVID-19, нелинейные обыкновенные дифференциальные уравнения первого порядка, модель SIR.
УДК:
51-73
Поступила в редакцию: 12.09.2020 Исправленный вариант: 19.10.2020 Принята в печать: 18.11.2020