RUS  ENG
Полная версия
ЖУРНАЛЫ // Журнал вычислительной математики и математической физики // Архив

Ж. вычисл. матем. и матем. физ., 2021, том 61, номер 11, страницы 1786–1813 (Mi zvmmf11314)

Эта публикация цитируется в 4 статьях

Общие численные методы

Итерационные предобусловленные методы в подпространствах Крылова: тенденции XXI века

В. П. Ильинab

a 630090 Новосибирск, пр-т Акад. Лаврентьева, 6, Институт вычислительной математики и математической геофизики СО РАН, Россия
b 630073 Новосибирск, пр-т К. Маркса, 20, Новосибирский государственный технический университет, Россия

Аннотация: Предлагается аналитический обзор основных проблем, а также новых математических и технологических находок в развитии методов решения СЛАУ. Данная стадия математического моделирования становится “узким горлышком”, поскольку здесь объемы вычислительных ресурсов растут нелинейно с увеличением числа степеней свободы задачи. Важно отметить, что эффективность и производительность вычислительных методов и технологий в значительной степени зависят от учета специфики класса решаемых прикладных проблем: задачи электромагнетизма, гидро-газодинамики, упруго-пластичности, многофазной фильтрации, тепломассопереноса и т.д. Развитие крыловских итерационных процессов ориентировано главным образом на построение двухуровневых алгоритмов с различными ортогональными, проекционными, вариационными и спектральными свойствами, включая аппарат не только полиномиальных, но и рациональных или гармонических приближений. Дополнительное ускорение таких алгоритмов осуществляется на основе подходов дефляции или агментации с использованием некоторых систем базисных векторов. Активные исследования направлены на конструирование экономичных предобусловливающих операторов, на основе многообразных принципов: новые многосеточные схемы и параллельные методы декомпозиции областей, мультипредобусловливание, вложенные и попеременно-треугольные факторизации, малоранговые и другие алгоритмы аппроксимации обратных матриц и т.д. Достижение высокой производительности и масштабируемого распараллеливания базируется на средствах гибридного программирования с использованием инструментов межузловых сообщений, многопотоковых вычислений, векторизации операции и графических ускорителей. Современные тенденции математического и программного обеспечения заключаются в создании интегрированного инструментального окружения, ориентированного на длительный жизненный цикл и массовые инновации в актуальных приложениях.
Библ. 98.

Ключевые слова: разреженные СЛАУ, предобусловливание, итерационные методы, подпространства Крылова, симметричные и несимметричные матрицы, алгоритмы декомпозиции, многосеточные подходы, приближенная факторизация.

УДК: 519.6

Поступила в редакцию: 11.02.2020
Исправленный вариант: 16.03.2021
Принята в печать: 07.07.2021

DOI: 10.31857/S0044466921110090


 Англоязычная версия: Computational Mathematics and Mathematical Physics, 2021, 61:11, 1750–1775

Реферативные базы данных:


© МИАН, 2024