Аннотация:
Для класса эллиптических уравнений вида $\Lambda^*\mathcal{A}\Lambda u+l=0$ исследуется вопрос о том, как вычислить расстояние между функцией $u$ и любым ее приближением $v$ из соответствующего энергетического пространства. Анализ основан на тождестве, которому удовлетворяют нормы отклонений от точного решения этой задачи и точного решения двойственной задачи. Оно имеет ряд следствий. В частности, тождество позволяет оценить максимальное и минимальное расстояния до точного решения, используя только известное приближенное решение, данные задачи и решение специально сконструированной конечномерной задачи. При этом не требуется использовать интерполяционные неравенства Клемана (Clement's interpolation) или процедуры балансировки потока (flux equilibration). Показано, что оценки эквивалентны соответствующим нормам расстояния до решения и пригодны для широкого класса аппроксимаций, который включает как галеркинские приближения, так и достаточно грубые аппроксимации точного решения. Эти результаты проверены в серии численных экспериментов, где сравнивается эффективность различных методов.
Библ. 36. Фиг. 6. Табл. 3.
Ключевые слова:уравнения эллиптического типа, оценки отклонения от точного решения, апостериорные оценки точности приближенных решений.
УДК:519.63
Поступила в редакцию: 13.03.2021 Исправленный вариант: 13.03.2021 Принята в печать: 04.08.2021