Аннотация:
Рассматривается способ суммирования рядов, который сводится к решению некоторых линейных функциональных уравнений. Частичные суммы любого числового ряда удовлетворяют очевидному разностному уравнению. Это уравнение преобразуется в функциональное уравнение на интервале [0, 1] для непрерывного аргумента. Далее это уравнение либо решается явно (с точностью до произвольной константы), либо вычисляется асимптотическое разложение решения в нуле. Сумма исходного ряда определяется однозначно как константа, которая необходима для согласования асимптотического разложения решения с частичными суммами исходного ряда. Понятие предела не участвует в данной вычислительной схеме, что позволяет суммировать также расходящиеся ряды.
Библ. 16. Фиг. 1.