Аннотация:
Задача об отыскании весов и узлов кубартурных формул заданного порядка на единичной сфере, инвариантных относительно групп вращения икосаэдра (задача А.С. Попова) исследуется аналитически в системах компьютерной алгебры. Алгоритм Попова сведения задачи к системе нелинейных уравнений реализован в известной системе компьютерной алгебры Sage. Показано, что в Sage трудности с исследованием полученной системы нелинейных алгебраических уравнений возникают, начиная с порядка аппроксимации, равного 23. Показано также, что задача Попова при таком порядке приводит к полиномиальному идеалу, базис Грёбнера для которого содержит многочлены с экстремально большими целыми коэффициентами, что делает ее весьма трудной для исследования стандартными инструментами, реализованными в Sage. Этот базис найден в нашей системе компьютерной алгебры – GInv, новая версия которой была передана в общественный доступ одним из авторов статьи в 2021 г. Это позволило далее полностью описать множество решений задачи Попова в Sage. Проведено сравнение найденных нами точных решений с решениями, найденными Поповым численно. Обсужден потенциал использования задачи Попова как тестовой задачи для систем, специализирующихся на вычислении базиса Грёбнера.
Библ. 19.
Ключевые слова:базис Грёбнера, инволютивный базис, кубатурные формулы, группа вращения икосаэдра.
УДК:519.644
Поступила в редакцию: 24.04.2022 Исправленный вариант: 24.04.2022 Принята в печать: 10.09.2022