Аннотация:
При описании процесса распространения сейсмических волн в геологических средах используются линейные гиперболические системы уравнений. Они соответствуют акустической, изотропной и анизотропной линейно-упругой, пористой флюидонасыщенной моделям. Для их численного решения успешно применяются сеточно-характеристические схемы, учитывающие распространение разрывов решения вдоль характеристик. Важным свойством используемых на практике схем является повышенный порядок аппроксимации, позволяющий четко разрешать волновые фронты отдельных сигналов. При этом значительное внимание исследователей было уделено его достижению во внутренних точках расчетной области. В настоящей работе исследуется вопрос аппроксимации схемы вплоть до границы области включительно. Предложен подход, позволяющий с высокой точностью обеспечивать постановку произвольных линейных граничных и контактных условий. Все рассмотрение проведено для случая одномерной системы уравнений акустики с постоянными коэффициентами.
Библ. 26. Фиг. 2. Табл. 3.