Аннотация:
История метода поочередных проекций для нахождения общей точки нескольких выпуклых множеств в евклидовом пространстве восходит к известному алгоритму Качмаржа для решения систем линейных уравнений, который появился в 1930-х годах и впоследствии нашел широкое применения в обработке изображений и компьютерной томографии. Важную роль в исследовании данного метода сыграли работы И.И. Ерёмина, Л.М. Брэгмана и Б.Т. Поляка, появившиеся практически одновременно и содержащие весьма общие результаты о сходимости последовательных проекций к точке на пересечении множеств, если это пересечение непусто. В настоящей статье мы рассматриваем модификацию задачи о пересечении выпуклых множеств, относящуюся к теории многоагентных систем и называемую задачей о консенсусе с ограничениями. Каждое выпуклое множество в этой задаче связано со своим агентом и, вообще говоря, недоступно другим агентам. При этом группа агентов заинтересована в нахождении общей точки этих множеств: точки, удовлетворяющей ограничениям. Распределенные аналоги метода поочередных проекций, предложенные для решения этой задачи, приводят к достаточно сложной нелинейной системе уравнений, сходимость которой, обычно, доказывается с помощью специальных функций Ляпунова. В работе дается краткий обзор данных методов и показывается их связь с теоремой о консенсусе в системе усредняющих неравенств, недавно установленной в работах первого автора и развивающей результаты о сходимости обычного метода последовательных усреднений в задаче о консенсусе.
Библ. 48. Фиг. 6.