RUS  ENG
Полная версия
ЖУРНАЛЫ // Журнал вычислительной математики и математической физики // Архив

Ж. вычисл. матем. и матем. физ., 2024, том 64, номер 7, страницы 1614–1630 (Mi zvmmf11798)

Статьи, опубликованные в английской версии журнала

The solution comparison of fractional heat transfer and porous media equations using analytical techniques

M. Arshada, S. Khana, M. Sohaila, H. Khanab, F. Tchierc, M. K. Haidaryd, M. Nadeeme

a Department of Mathematics, Abdul Wali Khan University, Mardan, Pakistan
b Department of Mathematics, Near East University, Mersin, Turkey
c Mathematics Department, College of Science, King Saud University, P.O. Box 22452, 11495, Riyadh, Saudi Arabia
d Kabul University, Kabul, Afghanistan
e Qujing Normal University, Qujing, China

Аннотация: In this paper, the mathematical model of heat and porous media equations being considered in fractional form. The Laplace residual power series method and the Laplace Adomian decomposition technique are used to compare the solutions of the fractional heat transfer and porous media equations. For this reason, a few examples are presented to understand the fractional heat transfer and porous media equations in its more accurate form. The results show the simple and sophisticated procedures of the two proposed analytical approaches, where partial differential equations are considered with fractional derivatives. The outcomes of the described methods demonstrate that they have an accurate algorithm to construct with exceptionally precise cost calculation capabilities. The obtained results are presented through tables and graphs and the approximate results are found in great contact with exact solutions.

Ключевые слова: Caputo derivative, Laplace transformation, fractional order heat transfer and porus media equations, Laplace Adomian decomposition method, Laplace residual power series method.

Поступила в редакцию: 18.09.2023
Исправленный вариант: 04.03.2024
Принята в печать: 01.09.2024

Язык публикации: английский


 Англоязычная версия: Computational Mathematics and Mathematical Physics, 2024, 64:7, 1614–1630


© МИАН, 2025