RUS  ENG
Полная версия
ЖУРНАЛЫ // Журнал вычислительной математики и математической физики // Архив

Ж. вычисл. матем. и матем. физ., 2025, том 65, номер 1, страницы 97–109 (Mi zvmmf11909)

Математическая физика

Spatial optimal disturbances of three-dimensional aerodynamic boundary layers

A. V. Boikoa, K. V. Demyankoa, S. A. Kuznetsovaab, Yu. M. Nechepurenkoa, G. V. Zaskoa

a Marchuk Institute of Numerical Mathematics, Russian Academy of Sciences, 119333, Moscow, Russia
b Moscow Institute of Physics and Technology (National Research University), 141701, Dolgoprudny, Russia

Аннотация: In the present paper, we propose a numerical method for modeling the downstream propagation of optimal disturbances in compressible boundary layers over three-dimensional aerodynamic configurations. At each integration step, the method projects the numerical solution of governing equations onto an invariant subspace of physically relevant eigenmodes; and the numerical integration is performed along the lines of disturbance propagation. The propagation of optimal disturbances is studied in a wide range of parameters for two configurations: a boundary layer over a swept wing of finite span, and a boundary layer over a prolate spheroid. It is found that the dependence of the disturbance energy amplification on the spanwise wavenumber has two local maxima. It is discussed how to combine the developed method with the modern approaches, which are designed to predict the onset of laminar–turbulent transition using the e$^N$-method.

Ключевые слова: compressible boundary layers, spatial optimal disturbances, bypass transition, boundary layer over a swept wing, boundary layer over a prolate spheroid, e$^N$-method.

УДК: 532.51

Поступила в редакцию: 16.08.2024
Исправленный вариант: 16.08.2024
Принята в печать: 26.09.2024

Язык публикации: английский

DOI: 10.31857/S0044466925010093


 Англоязычная версия: Computational Mathematics and Mathematical Physics, 2025, 65:1, 138–150

Реферативные базы данных:


© МИАН, 2025