RUS  ENG
Полная версия
ЖУРНАЛЫ // Журнал вычислительной математики и математической физики // Архив

Ж. вычисл. матем. и матем. физ., 2025, том 65, номер 6, страницы 1181–1194 (Mi zvmmf12021)

Статьи, опубликованные в английской версии журнала

An interior-point algorithm for LCP based on a parameterized hyperbolic kernel function

Y. Bouhenache, W. Chikouche, S. Guerdouh

Laboratory of Pure and Applied Mathematics, Faculty of Exact Sciences and Informatics, University of Jijel, 18000, Jijel, Algeria

Аннотация: In this paper, we propose two new classes of kernel functions (KFs) with hyperbolic barrier terms and define interior-point methods (IPMs) based on these functions to solve linear complementarity problems (LCPs). The two proposed classes have similar forms but are different. One of them is a generalization, up to a multiplicative constant, to the KF recently introduced by Guerdouh et al. (J. Appl. Math. Comput. 1–19 (2023)). According to our analysis, the worst-case iteration complexity of large-update IPMs enjoys the best iteration bound $O (\sqrt {n}\log n \log\frac{n}{\epsilon})$ for large-update methods with special choices of the parameters. This bound coincides with the so far best known complexity results obtained from KFs for LCPs. Finally, some numerical issues regarding the practical performance of the new proposed KFs are reported.

Ключевые слова: linear complementarity problem, kernel function, interior-point methods, large-update methods.

Поступила в редакцию: 06.08.2024
Исправленный вариант: 06.02.2025
Принята в печать: 27.03.2025

Язык публикации: английский


 Англоязычная версия: Computational Mathematics and Mathematical Physics, 2025, 65:6, 1181–1194


© МИАН, 2025