Аннотация:
Последние разработки в области применения моделей глубокого обучения к акустической полноволновой инверсии (Full Waveform Inversion, FWI) отмечены использованием диффузионных моделей в качестве априорных распределений для процедур вывода байесовского типа. Преимуществом этих методов является возможность генерировать выборки высокого разрешения, которые никак недостижимы в случае классических методов инверсии или других основанных на глубоком обучении решений. Однако итеративный и стохастический характер выборки из диффузионных моделей наряду с эвристическим характером выходного управления все еще ограничивают их применимость. Например, остается неясным оптимальный способ включения приближенной скоростной модели в схему инверсии на основе диффузии, даже несмотря на то, что она считается неотъемлемой частью конвейера FWI. Для решения этой задачи используется мост Шрёдингера, который осуществляет интерполяцию между распределениями эталонных данных и сглаженными скоростными моделями. Таким образом, процесс вывода, начинающийся с приближенной скоростной модели, гарантированно приходит за конечное время к выборке из распределения эталонных скоростных моделей. Чтобы облегчить изучение нелинейных дрейфов, которые передают выборки между распределениями, и обеспечить контролируемый вывод с учетом сейсмических данных, концепция моста Шрёдингера от изображения к изображению (I2SB) расширяется до условной выборки, что приводит к условной концепции моста Шрёдингера от изображения к изображению (cI2SB) для акустической инверсии. Для обоснования метода оценивается его эффективность при реконструкции эталонной скоростной модели по ее сглаженной аппроксимации наряду с наблюдаемым сейсмическим сигналом фиксированной формы. Эксперименты показывают, что предлагаемое решение превосходит повторную реализацию модели условной диффузии, предложенной авторами в предыдущих работах, при этом для достижения точности выборки, превосходящей ту, которая достигается с помощью подхода, основанного на контролируемом обучении, требуется лишь несколько оценок нейронной функции (NFE). Дополнительный код, реализующий алгоритмы, описанные в данной статье, можно найти в репозитории.
Ключевые слова:
full полноволновая инверсия FWI, акустические уравнения, диффузионные модели, мост Шрёдингера.
УДК:519.7
Поступила в редакцию: 30.04.2025 Принята в печать: 22.05.2025