RUS  ENG
Полная версия
ЖУРНАЛЫ // Журнал вычислительной математики и математической физики // Архив

Ж. вычисл. матем. и матем. физ., 2025, том 65, номер 8, страницы 1945–1964 (Mi zvmmf12043)

Статьи, опубликованные в английской версии журнала

Oscillatory flow and solute transport in an elastic tube under the influence of suction/injection

Ferqunda Tabassum, P. Muthu

Department of Mathematics, National Institute of Technology, 506 004, Warangal, India

Аннотация: The present work explores the dynamics of solute transport and oscillatory fluid flow in an elastic tube of varying cross-section, subject to suction/injection at the boundary. The nonlinear equations governing the fluid flow are solved analytically using a perturbation method, while the convection-diffusion equation describing solute dispersion is numerically analyzed with the finite difference method. The effects of the elasticity parameter, suction/injection parameter, Womersley number, and Péclet number on the velocity components and the solute dispersion profiles are analyzed and illustrated graphically. Results reveal that injection enhances flow dynamics more strongly in convergent tube, while suction has a milder effect in divergent tubes. Elasticity improves solute distribution in convergent tubes and alters it in divergent tubes. Suction increases concentration in convergent tubes and reduces it in the case of divergent tubes. These results offer critical insights into the complex interplay of fluid transport, solute dispersion, and geometrical variations in elastic conduits, with broad implications for physiological and industrial applications.

Ключевые слова: oscillatory flow, Crank–Nicolson implicit scheme, Thomas algorithm, solute transport, Gill's method, perturbation method.

Язык публикации: английский


 Англоязычная версия: Computational Mathematics and Mathematical Physics, 2025, 65:8, 1945–1964


© МИАН, 2025