RUS  ENG
Полная версия
ЖУРНАЛЫ // Журнал вычислительной математики и математической физики // Архив

Ж. вычисл. матем. и матем. физ., 2025, том 65, номер 9, страницы 2074–2086 (Mi zvmmf12069)

Статьи, опубликованные в английской версии журнала

The Fibonacci and Lucas generalized quaternionic sequences over $\mathcal{HGC}$ numbers

G. Y. Saçlı, N. Gürses

Yildiz Technical University, Faculty of Arts and Sciences, Department of Mathematics, 34220, Istanbul, Türkiye

Аннотация: In this paper, with the use of generalized complex and hyperbolic numbers, we build the theory of generalized quaternions with hyperbolic-generalized complex $(\mathcal{HGC})$ numbers as coefficients. Additionally, certain associated theoretical universal results involving $\mathcal{HGC}$ Fibonacci and Lucas numbers, including their generalized quaternions, are established. With this approach, bihyperbolic, hyperbolic-complex, and hyperbolic-dual generalized quaternions can be determined for specified values of $\mathfrak{p}\in\mathbb{R}$. It is also possible to study numerous types of quaternions with $\mathcal{HGC}$ number coefficients and their attributes depending on the choice of the real values and $\alpha$ and $\beta$.

Ключевые слова: hyperbolic-generalized complex number, generalized quaternion, Fibonacci number, Lucas number.

Поступила в редакцию: 12.10.2024
Исправленный вариант: 11.06.2025
Принята в печать: 17.11.2025

Язык публикации: английский


 Англоязычная версия: Computational Mathematics and Mathematical Physics, 2025, 65:9, 2074–2086


© МИАН, 2025