RUS  ENG
Полная версия
ЖУРНАЛЫ // Журнал вычислительной математики и математической физики // Архив

Ж. вычисл. матем. и матем. физ., 2025, том 65, номер 10, страницы 2342–2361 (Mi zvmmf12077)

Статьи, опубликованные в английской версии журнала

An adaptive stochastic gradient algorithm based on FISTA for convex optimization

Yujia Zhai, Dan Xue, Rulei Qi, Zewei Wang

School of Mathematics and Statistics, Qingdao University, 266071, Qingdao, China

Аннотация: In this paper, we propose a fast iterative stochastic gradient method to solve convex optimization problem, referred as the RFISTA-SVRG-TR. We incorporate a restarting fast iteration mechanism into the inner loop, which promotes the convergence process of the algorithm. Furthermore, in order to shorten the oscillation period and enhance the stability of algorithm, each new iteration point is generated by solving the trust region subproblem. Under the condition of strong convexity, the proof of linear convergence and the overall complexity of algorithm are given. We show the superiority of the algorithm with suitable parameters in numerical experiments.

Ключевые слова: convex stochastic optimization, FISTA, restarting mechanism, trust region, stochastic variance reduced gradient, machine learning.

Поступила в редакцию: 01.01.2025
Исправленный вариант: 01.01.2025
Принята в печать: 18.11.2025

Язык публикации: английский


 Англоязычная версия: Computational Mathematics and Mathematical Physics, 2025, 65:10, 2342–2361


© МИАН, 2025