Аннотация:
На прямоугольнике рассматривается задача Дирихле для системы двух сингулярно возмущенных параболических уравнений типа реакции-диффузии. Старшие производные уравнений содержат возмущающий параметр $\varepsilon^2$, $\varepsilon$ принимает произвольные значения из полуинтервала $(0,1]$. При значении параметра $\varepsilon$, равном нулю, система параболических уравнений вырождается в систему обыкновенных дифференциальных уравнений относительно переменной $t$. При стремлении параметра $\varepsilon$ к нулю в окрестности границы появляется параболический пограничный слой с характерной шириной $\varepsilon$. С использованием метода сгущающихся сеток и классических разностных аппроксимаций краевой задачи строится специальная разностная схема, сходящаяся $\varepsilon$-равномерно со скоростью $O(N^{-2}\ln^2N+N_0^{-1})$, где $N=\min_s N_s$, $N_s+1$ и $N_s+1$ – число узлов сетки по оси $x_s$ и по оси $t$ соответственно.
Библ. 21.
Ключевые слова:начально-краевая задача на прямоугольнике, возмущающий параметр $\varepsilon$, система параболических уравнений реакции-диффузии, разностная аппроксимация, параболический пограничный слой, априорные оценки решения и производных, $\varepsilon$-равномерная сходимость.