Аннотация:
Ранее сформулированные для явных двухслойных разностных схем и широко распространенные при численном решении уравнений гиперболического типа критерии монотонности (С. К. Годунова, А. Хартена (TVD схемы), характеристический) обобщаются на случай многослойных, в том числе неявных сеточных шаблонов. На основе характеристического критерия монотонности предлагается универсальный алгоритм построения нелинейных, монотонных при произвольном виде искомого решения схем высокого порядка аппроксимации на основе их анализа в пространстве сеточных функций. Предлагается ряд новых монотонных разностных схем четвертого-третьего порядка аппроксимации на трехслойном компактном сеточном шаблоне и на нерасширяющихся (трехточечных) сеточных шаблонах для продолженной системы, что позволяет обеспечить монотонность разностных схем как для искомой функции, так и для ее производных. Приводятся результаты тестирования предложенных разностных схем высокого порядка аппроксимации на основе характеристического критерия монотонности и рассматриваются некоторые вопросы обобщения предлагаемых монотонных схем высокого порядка аппроксимации на случай систем уравнений гиперболического типа. Библ. 38. Фиг. 13.
Ключевые слова:уравнения гиперболического типа, разностные схемы, критерии монотонности разностных схем, разностные схемы высокого порядка аппроксимации.
УДК:519.633
Поступила в редакцию: 23.01.2006 Исправленный вариант: 14.04.2006