RUS  ENG
Полная версия
ЖУРНАЛЫ // Журнал вычислительной математики и математической физики // Архив

Ж. вычисл. матем. и матем. физ., 2006, том 46, номер 2, страницы 242–261 (Mi zvmmf518)

Метод асимптотических конструкций повышенной точности для квазилинейного сингулярно возмущенного параболического уравнения конвекции-диффузии

Г. И. Шишкин

620219 Екатеринбург, ул. С. Ковалевской, 16, ИММ УрО РАН

Аннотация: Рассматривается задача Дирихле на отрезке для квазилинейного сингулярно возмущенного параболического уравнения конвекции-диффузии; старшая производная уравнения содержит параметр $\varepsilon$, принимающий произвольные значения из полуинтервала (0, 1]. Для такого типа линейной задачи $\varepsilon$-равномерная скорость сходимости (по $x$ и $t$) хорошо известных схем не выше первого порядка (в равномерной норме). Для рассматриваемой краевой задачи строятся сеточные аппроксимации, сходящиеся $\varepsilon$-равномерно со скоростью $O(N^{-2}\ln^2N+N_0^{-2})$, где $N+1$ и $N_0+1$ – число узлов сетки по $x$ и $t$ соответственно. По оси $x$ используются кусочно-равномерные сетки, сгущающиеся в пограничном слое. В том случае, когда значения параметра малы по сравнению с эффективным шагом пространственной сетки, применяется метод декомпозиции области, мотивируемый “асимптотическими конструкциями”. Используются монотонные аппроксимации “вспомогательных” подзадач, описывающих главные члены асимптотического разложения решения вне окрестности погранслоя. В окрестности пограничного слоя (ширины $O(\varepsilon\ln N)$) первая производная по $x$ аппроксимируется центральной разностной производной. Указанные подзадачи решаются на подобластях последовательно, причем на равномерных сетках. Если же значения параметра не являются достаточно малыми (по сравнению с эффективным шагом сетки по $x$), применяются классические неявные разностные схемы с аппроксимацией первой производной по $x$ центральной разностной производной. Для улучшения точности по $t$ используется техника дефект-коррекции. Отметим, что вычисление решений построенной разностной схемы (схемы на основе метода “асимптотических конструкций”) существенно упрощается при достаточно малых значениях параметра $\varepsilon$. Библ. 27.

Ключевые слова: сингулярно возмущенная задача Дирихле, квазилинейное параболическое уравнение конвекции-диффузии, повышение точности, метод асимптотических конструкций, декомпозиция области, кусочно-равномерные сетки.

УДК: 519.633

Поступила в редакцию: 23.08.2005


 Англоязычная версия: Computational Mathematics and Mathematical Physics, 2006, 46:2, 231–250

Реферативные базы данных:


© МИАН, 2024