Аннотация:
Четные собственные неустойчивые моды регулярных стационарных решений системы взаимодействующих $\mathrm{SU}(2)$ Янга–Миллса и дилатонного полей. Получены четные неустойчивые моды регулярных стационарных решений системы уравнений, описывающей систему взаимодействующих сферически симметричных полей Янга–Миллса калибровочной группы $\mathrm{SU}(2)$ и дилатонного поля в пространстве Минковского размерности $3+1$. Соответствующая матричная задача Штурма–Лиувилля решалась численно на основе непрерывного аналога метода Ньютона. Этот метод также был применен для решения краевой задачи и детально представлен в работе. Библ. 31. Фиг. 5. Табл. 3.
Ключевые слова:Yang–Mills-dilaton equations, regular solutions, matrix Sturm–Liouville problem, Continuous analog of Newton method, Method of collocation.