Аннотация:
Рассмотрена критическая динамика пространственно-неоднородной системы. Анализ динамики расширен учетом локальной неравновесности, что приводит к сингулярному возмущению используемых уравнений за счет появления второй производной по времени. Построено расширение теоремы Эйра (Eyre), справедливой для классических уравнений критической динамики, описываемых уравнениями первого порядка по времени и базирущихся на гипотезе локального равновесия. Показано, что на основе разложения свободной энергии на растягивающую и сжимающую части, предложенного Эйром для классических уравнений, для уравнений второго порядка по времени также могут быть построены численные алгоритмы, обладающие градиентной устойчивостью. Эти градиентно-устойчивые алгоритмы приводят к монотонному невозрастанию свободной энергии при моделировании процесса с произвольным шагом по времени. Показано, что условия градиентной устойчивости для
модифицированных и классических уравнений критической динамики совпадают между собой при определенной аппроксимации по времени соотношений инерционной динамики, вводимых для описания локальной неравновесности. Рассмотрены модельные задачи, демонстрирующие расширенную теорему Эйра для задач критической динамики. Библ. 32.