Аннотация:
Анализируется однородная схема с 26-точечным оператором усреднения решения задачи Дирихле для уравнения Лапласа на прямоугольном параллелепипеде. Доказывается, что порядок сходимости схемы равен $O(h^4)$, где $h$ – шаг сетки, когда граничные функции принадлежат на гранях параллелепипеда классу $C^{3,1}$, а их вторые производные удовлетворяют на ребрах условию согласования, вытекающему из уравнения Лапласа. Кроме того, доказывается, что порядок сходимости есть $O(h^6(|{\ln h|})+1)$, когда граничные функции принадлежат классу $C^{5,1}$ и удовлетворяется условие согласования на ребрах для их производных четвертого порядка. Эти оценки можно использовать для обоснования различных версий методов декомпозиции области. Библ. 14.
Ключевые слова:трехмерное уравнение Лапласа, метод конечных разностей, равномерная оценка погрешности, область в виде прямоугольного параллелепипеда.