RUS  ENG
Full version
PEOPLE
Glutsyuk Alexey Antonovich
Doctor of physico-mathematical sciences (2012)

Speciality: 01.01.02 (Differential equations, dynamical systems, and optimal control)
Phone: +7 (495) 772 95 90 * 15164, +33 4 72 72 84 20
E-mail:
Website: https://www.umpa.ens-lyon.fr/umpa/annuaire/glutsyuk-alexey
Keywords: Dynamical systems, real and complex billiards, integrable billiards, periodic orbits, ordinary differential equations in real and complex time, holomorphic foliations, Stokes phenomena, model of Josephson junction in superconductivity.
UDC: 517.9, 517.5
MSC: 58F23, 57M50

Subject:

Dynamical systems, real and complex billiards, analytic theory of ordinary differential equations in real and complex time, foliations, complex geometry and dynamics, transformation groups.


Main publications:
  1. A.A.Glutsyuk, “On polynomially integrable Birkhoff billiards on surfaces of constant curvature”, Klassifikatsiya polinomialno integriruemykh ploskikh bilyardov: reshenie polinomialnoi versii gipotezy Birkhgofa, sformulirovannoi S.V.Bolotinym, J. Eur. Math. Society, 23:3 (2021), 994–1049
  2. A.A.Glutsyuk, E.I.Shustin, “On polynomially integrable planar outer billiards and curves with symmetry property”, Dokazano, chto vsyakii polinomialno integriruemyi vneshnii bilyard ogranichen konikoi. Reshenie gipotezy S.L.Tabachnikova, Math. Annalen, 372 (2018), 1481–1501
  3. A.A.Glutsyuk, “On 4-reflective complex analytic planar billiards”, Vvedenie kompleksnykh bilyardov na dvumernoi kompleksnoi ploskosti. Klassifikatsiya kompleksnykh bilyardov s otkrytym mnozhestvom 4-periodicheskikh orbit. Primenenie k veschestvennym bilyardam, vklyuchaya reshenie dvumernoi gipotezy Tabachnikova o kommutiruyuschikh bilyardakh, J. Geom Analysis, 27:1 (2017), 183–238
  4. A. Glutsyuk, “Instability of nondiscrete free subgroups in Lie groups”, Dokazano, chto vsyakuyu konechno-porozhdennuyu nediskretnuyu svobodnuyu podgruppu v proizvolnoi gruppe Li mozhno prevratit v nesvobodnuyu podgruppu skol ugodno malym vozmuscheniem obrazuyuschikh, Transformations groups, 16:2 (2011), 413–479
  5. Yu. Bibilo; A. Glutsyuk, “On families of constrictions in model of overdamped Josephson junction and Painlevé 3 equation”, Preprint, 72 str, podan v pechat. Issledovano semeistvo differentsialnykh uravnenii na dvumernom tore, modeliruyuschee silno shuntirovannyi perekhod Dzhozefsona v sverkhprovodimosti. Resheny dve gipotezy o peremychkakh zon fazovogo zakhvata (o raspolozhenii na odnoi pryamoi i o polozhitelnosti) s pomoschyu novykh razrabotannykh metodakh, ispolzuyuschikh teoriyu kompleksnykh lineinykh uravnenii (yavlenie Stoksa i izomonodromnye deformatsii, opisyvaemye uravneniyami Penleve 3) i teoriyu bystro-medlennykh sistem, Preprint series arxiv.org (Working papers of Cornell University), 2020, https://arxiv.org/abs/2011.07839

Recent publications

Presentations in Math-Net.Ru

Personal pages:

Organisations:


© Steklov Math. Inst. of RAS, 2024