Peller Vladimir Vsevolodovich
|
|
Professor
|
Doctor of physico-mathematical sciences
|
E-mail:
Keywords: self-adjoint operators; normal operators; Hankel operators; Toeplitz operators; trace formulae; Schatten - von Neumann classes; operator Lipschitz functions
UDC: 513, 513.8, 513.881, 517.5, 517.53, 517.948, 517.98, 519.28, 517.51
Subject: operator theory; perturbation theory; Hankel and Toeplitz operators; multiple operator integrals; stationary processes
Main publications:
-
V.V. Peller, “Operatory Gankelya v teorii vozmuschenii unitarnykh i samosopryazhennykh operatorov”, Funkts. analiz i ego pril., 19:2 (1985), 37–51
-
V.V. Peller, “Operatory Gankelya klassa S_p
i ikh prilozheniya (ratsionalnaya approksimatsiya, gaussovskie protsessy, problema mazhoratsii operatorov”, Matem. sb., 113(155):4 (1980), 538–581
-
V.V. Peller, Hankel operators and their applications, Springer Monographs in Mathematics, Springer-Verlag, New York, 2003
-
A.B. Aleksandrov and V.V. Peller, “Operator Hölder–Zygmund functions”, Advances in Math, 224 (2010), 910–966
-
V.V. Peller, “The Lifshits–Krein trace formula and operator Lipschitz functions”, Proc. Amer. Math. Soc., 144 (2016), 5207–5215
Recent publications
© , 2025