RUS  ENG
Full version
PEOPLE
Popov Vladimir Leonidovich
Popov Vladimir Leonidovich
Corresponding member of RAS
Professor
Doctor of physico-mathematical sciences (1984)

Speciality: 01.01.06 (Mathematical logic, algebra, and number theory)
Birth date: 3.09.1946
Phone: +7 (499) 941 01 79
Fax: +7 (495) 984 81 41 * 36 70
E-mail: ,
Website: https://researchgate.net/profile/Vladimir_Popov12
Keywords: Algebraic group, Lie group, Lie algebra, algebraic variety, action, representation, algebra, invariant, covariant, orbit, homogeneous space, automorphism group of algebraic variety, Cremona group, discrete reflection group, lattice.
UDC: 512.7, 512.745, 512.745.4, 512.743, 512.747, 512.76, 512.77, 512.71, 512.812, 512.813, 512, 519.4
MSC: 14l30, 14l24, 14l35, 15a72, 14l40, 14l10, 14l15, 14l17, 14m17, 14m20, 20G05, 15A72

Subject:

Algebraic transformation groups; invariant theory; algebraic groups, Lie groups, Lie algebras and their representations; algebraic geometry; automorphism groups of algebraic varieties; discrete reflection groups


Main publications:
  1. V. L. Popov, “Group varieties and group structures”, Izv. Math., 86:5 (2022), 903–924  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  scopus
  2. Vladimir L. Popov, “On the equations defining affine algebraic groups”, Pacific J. Math., 279:1-2, Special issue. In memoriam: Robert Steinberg (2015), 423–446 http://msp.org/pjm/2015/279-1/p19.xhtml, arXiv: 1508.02860  mathnet  crossref  mathscinet  zmath  isi  scopus
  3. J.-L. Colliot-Thélène, B. Kunyavskiĭ, V. L. Popov, Z. Reichstein, “Is the function field of a reductive Lie algebra purely transcendental over the field of invariants for the adjoint action?”, Compos. Math., 147:2 (2011), 428–466  crossref  mathscinet  zmath  isi  scopus
  4. V. L. Popov, “Cross-sections, quotients, and representation rings of semisimple algebraic groups”, Transform. Groups, 16:3, special issue dedicated to Tonny Springer on the occasion of his 85th birthday (2011), 827–856  crossref  mathscinet  zmath  isi  elib  scopus
  5. N. Lemire, V. L. Popov, Z. Reichstein, “Cayley groups”, J. Amer. Math. Soc., 19:4 (2006), 921–967  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus
  6. N. L. Gordeev, V. L. Popov, “Automorphism groups of finite dimensional simple algebras”, Annals of Math. (2), 158:3 (2003), 1041–1065  crossref  mathscinet  zmath  isi  elib  scopus
  7. V. L. Popov, Groups, Generators, Syzygies, and Orbits in Invariant Theory, Translations of Mathematical Monographs, 100, Amer. Math. Soc., Providence, RI, 1992 , vi+245 pp.  mathscinet  zmath
  8. V. L. Popov, “Modern developments in invariant theory”, Proceedings of the International Congress of Mathematicians (Berkeley, Calif., 1986), v. 1, Amer. Math. Soc., Providence, RI, 1987, 394–406 www.researchgate.net/publication/261556502_Modern_developments_in_invariant_theory  mathscinet
  9. V. L. Popov, Discrete Somplex Reflection Groups, Lectures delivered at the Math. Institute Rijksuniversiteit Utrecht in October 1980, Commun. Math. Inst. Rijksuniv. Utrecht, 15, Rijksuniversiteit Utrecht Mathematical Institute, Utrecht, 1982 , 89 pp. www.researchgate.net/publication/261552178_Discrete_complex_reflection_groups . Second enlarged edition published in Communications in Mathematics, vol. 30 (2022), no. 3 (published August 22, 2023), 303–375, cm.episciences.org/11725  mathscinet  zmath
  10. V. L. Popov, “Hilbert's theorem on invariants”, Soviet Math. Dokl., 20:6 (1979), 1318–1322  mathnet  mathscinet  mathscinet  zmath

Recent publications

Presentations in Math-Net.Ru

Personal pages:

Organisations:


© Steklov Math. Inst. of RAS, 2024