RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

1984, Volume 133

| General information | Contents |


Differential geometry, Lie groups and mechanics. Part VI


Hidden symmetry and higher currents in a supersymmetric gauge theory
I. Ya. Aref'eva, I. V. Volovich
6
Singular solutions of the KdV equation and the inverse scattering method
V. A. Arkad'ev, A. K. Pogrebkov, M. K. Polivanov
17
Several remarks on elliptic coordinates
V. I. Arnol'd
38
Construction of “Hauptfunktion”, solution of the equations of Schwarz and Puchs for a surface of zero genus by the methods of spectral theory of automorphic functions
A. B. Venkov
51
Quasiclassical approximation for the models of spin-spin interaction on the one-dimensional lattice
Yu. M. Vorob'ev, S. Yu. Dobrokhotov, V. P. Maslov
63
Multidimensional integrable nonlinear systems and methods for constructing their solutions
V. E. Zakharov, S. V. Manakov
77
Correlation functions in the quantum inverse scattering method
A. G. Izergin, V. E. Korepin
92
Liouville's theorem and the inverse scattering method
A. R. Its
113
Spherically symmetric solutions of the euclidean Yang–Mills equations
L. V. Kapitanski, O. A. Ladyzhenskaya
126
Correlation functions of the one-dimensional Bose gas in the repulsive case
V. E. Korepin
133
Integrable fermion chiral models, connected with the classical Lie algebras
P. P. Kulish, N. Yu. Reshetikhin
146
Geometry of supergravity and super-Schubert cells
Yu. I. Manin
160
Algebro-topological approach to reality problems. Real action variables in the theory of finite-gap solutions of the Sine-Gordon equations
S. P. Novikov
177
On spectral properties of one-dimensional disperse crystals
B. S. Pavlov, N. V. Smirnov
197
Hamiltonian structure of the Kadomzev–Petviashvily type equations
A. G. Reiman, M. A. Semenov-Tian-Shansky
212
Classical $r$-matrices and quantization
M. A. Semenov-Tian-Shansky
228
The Goryachov–Chaplygin top and the inverse scattering method
E. K. Sklyanin
236
Solutions of the triangle equations with $\mathbb Z_n\times\mathbb Z_n$-symmetry as the matrix analogues of the Weierstrass zets and sigma functions
L. A. Takhtadzhyan
258
Remarks on the spectral theory for the Schrodinger operator of multiparticle type
D. R. Yafaev
277


© Steklov Math. Inst. of RAS, 2024