RUS  ENG
Full version
PEOPLE

Lizorkin Petr Ivanovich

Publications in Math-Net.Ru

  1. Spaces of Banach-valued analytic and periodic functions

    Trudy Mat. Inst. Steklov., 210 (1995),  101–119
  2. Two-weight estimates for multipliers, and embedding theorems

    Dokl. Akad. Nauk, 336:4 (1994),  439–441
  3. On the approximation of functions on the sphere $\sigma$. On the spaces $B^\alpha_{p,q}(\sigma)$

    Dokl. Akad. Nauk, 331:5 (1993),  555–558
  4. Nikol'skij–Besov spaces on the sphere in connection with approximation theory

    Trudy Mat. Inst. Steklov., 204 (1993),  172–200
  5. Classes of holomorphic and harmonic functions in the polydisk in connection with their boundary values

    Trudy Mat. Inst. Steklov., 204 (1993),  137–159
  6. On some equivalent norms of the Nikol'skii–Besov space on a sphere

    Dokl. Akad. Nauk, 322:2 (1992),  228–232
  7. Functional spaces and approximation problems on Heisenberg group

    Trudy Mat. Inst. Steklov., 201 (1992),  245–272
  8. Direct and inverse theorems of approximation theory for functions on Lobachevsky space

    Trudy Mat. Inst. Steklov., 194 (1992),  120–147
  9. $\mathscr{B}$- and $\mathscr{L}$-classes of harmonic and holomorphic functions in the disc, and classes of boundary values

    Dokl. Akad. Nauk SSSR, 319:4 (1991),  806–810
  10. Approximation on Riemannian manifold

    Trudy Mat. Inst. Steklov., 200 (1991),  222–235
  11. Classes of functions constructed on the basis of averages over spheres. (The case of spaces of Sobolev type)

    Trudy Mat. Inst. Steklov., 192 (1990),  122–139
  12. Estimates for the growth of solutions of differential equations

    Differ. Uravn., 25:4 (1989),  578–588
  13. Embedding theorems for vector-valued functions. II

    Izv. Vyssh. Uchebn. Zaved. Mat., 1989, no. 2,  47–54
  14. Embedding theorems for vector-valued functions. I

    Izv. Vyssh. Uchebn. Zaved. Mat., 1989, no. 1,  70–79
  15. Functional spaces of mixed smoothness from decompositional point of view

    Trudy Mat. Inst. Steklov., 187 (1989),  143–161
  16. Multiplicators, basises, unconditional basises in weighted spaces В and SB

    Trudy Mat. Inst. Steklov., 187 (1989),  98–115
  17. The generalized Poisson integral and the smoothness of the solution of the Dirichlet problem for degenerate elliptic operators

    Differ. Uravn., 24:2 (1988),  305–313
  18. Weighted function spaces and their applications to the investigation of boundary value problems for degenerate elliptic equations

    Izv. Vyssh. Uchebn. Zaved. Mat., 1988, no. 8,  4–30
  19. Function classes that are constructed on the basis of averagings

    Sibirsk. Mat. Zh., 29:5 (1988),  181–190
  20. Investigations in the theory of spaces of differentiable functions of several variables

    Trudy Mat. Inst. Steklov., 182 (1988),  68–127
  21. A new approach to the theory of function spaces $B^r_{p,\theta}$ on a sphere

    Trudy Mat. Inst. Steklov., 181 (1988),  213–221
  22. Symmetric averaged differences on a sphere

    Dokl. Akad. Nauk SSSR, 296:2 (1987),  271–274
  23. Approximation of functions on the sphere

    Izv. Akad. Nauk SSSR Ser. Mat., 51:3 (1987),  635–651
  24. Functional spaces on the sphere, related with approximation theory

    Mat. Zametki, 41:4 (1987),  509–516
  25. Inequalities for harmonic, spherical and algebraic polynomials

    Dokl. Akad. Nauk SSSR, 289:3 (1986),  541–545
  26. Approximation of functions by spherical polynomials in the metric $L_p$

    Dokl. Akad. Nauk SSSR, 289:2 (1986),  285–289
  27. Inequalities of Bernstein type for spherical polynomials

    Dokl. Akad. Nauk SSSR, 288:1 (1986),  50–53
  28. Estimates in integral norms of derivatives of harmonic polynomials and spherical polynomials

    Dokl. Akad. Nauk SSSR, 286:1 (1986),  23–27
  29. Smoothness of the solution of the first boundary value problem for a second-order model degenerate elliptic differential operator

    Differ. Uravn., 22:11 (1986),  1945–1951
  30. Approximation by spherical functions

    Trudy Mat. Inst. Steklov., 173 (1986),  181–189
  31. Limit cases of theorems on $\mathscr F L_p$-multipliers

    Trudy Mat. Inst. Steklov., 173 (1986),  164–180
  32. On the theory of Fourier multipliers

    Trudy Mat. Inst. Steklov., 173 (1986),  149–163
  33. Approximation theory on the sphere

    Trudy Mat. Inst. Steklov., 172 (1985),  272–279
  34. On the theory of degenerate elliptic equations

    Trudy Mat. Inst. Steklov., 172 (1985),  235–251
  35. Estimates of approximate numbers of the imbedding operators for spaces of Sobolev type with weights

    Trudy Mat. Inst. Steklov., 170 (1984),  213–232
  36. Approximation by spherical polynomials

    Trudy Mat. Inst. Steklov., 166 (1984),  186–200
  37. Approximation on a sphere in the metric of the continuous functions

    Dokl. Akad. Nauk SSSR, 272:3 (1983),  524–528
  38. Approximation on the sphere in $L_2$

    Dokl. Akad. Nauk SSSR, 271:5 (1983),  1059–1063
  39. Coercive properties of an elliptic equation with degeneration and a generalized right-hand side

    Trudy Mat. Inst. Steklov., 161 (1983),  157–183
  40. Coercive properties of an elliptic equation with degeneracy

    Dokl. Akad. Nauk SSSR, 259:1 (1981),  28–30
  41. Elliptic equations with degeneracy. Differential properties of solutions

    Dokl. Akad. Nauk SSSR, 257:2 (1981),  278–282
  42. An elliptic equation with degeneracy. A variational method

    Dokl. Akad. Nauk SSSR, 257:1 (1981),  42–45
  43. Coercive properties of elliptic equations with degeneration. Variational method

    Trudy Mat. Inst. Steklov., 157 (1981),  90–118
  44. Imbedding theorems and compactness for spaces of Sobolev type with weights. II

    Mat. Sb. (N.S.), 112(154):1(5) (1980),  56–85
  45. Estimate of mixed and intermediate derivatives in weighted $L_p$-norms

    Trudy Mat. Inst. Steklov., 156 (1980),  130–142
  46. Imbedding theorems and compactness for spaces of Sobolev type with weights

    Mat. Sb. (N.S.), 108(150):3 (1979),  358–377
  47. Behavior at infinity of functions from Liouville classes. Riesz potentials of arbitrary order

    Trudy Mat. Inst. Steklov., 150 (1979),  174–197
  48. On the closure of the set of compactly supported functions in the weighted space $W^l_{p,\Phi}$

    Dokl. Akad. Nauk SSSR, 239:4 (1978),  789–792
  49. Bases and multipliers in the spaces $B^r_{p,\theta }(\Pi)$

    Trudy Mat. Inst. Steklov., 143 (1977),  88–104
  50. Interpolation of $L_p$ spaces with weight

    Trudy Mat. Inst. Steklov., 140 (1976),  201–211
  51. Interpolation of weighted $L_p$-spaces

    Dokl. Akad. Nauk SSSR, 222:1 (1975),  32–35
  52. The functional characterization of the interpolation spaces $(L_p(\Omega),W^1_p(\Omega))_{\theta,p}$

    Trudy Mat. Inst. Steklov., 134 (1975),  180–203
  53. Properties of functions in the spaces $\Lambda ^r_{p,\theta }$

    Trudy Mat. Inst. Steklov., 131 (1974),  158–181
  54. On a theorem of Marcinkiewicz type for $H$-valued functions. A continual form of the Paley–Littlewood theorem

    Mat. Sb. (N.S.), 87(129):2 (1972),  229–235
  55. Generalized Hölder classes of functions in connection with fractional differentiation

    Trudy Mat. Inst. Steklov., 128 (1972),  172–177
  56. Operators connected with fractional differentiation, and classes of differentiable functions

    Trudy Mat. Inst. Steklov., 117 (1972),  212–243
  57. Multipliers of Fourier integrals and bounds of convolution in spaces with mixed norms. Applications

    Izv. Akad. Nauk SSSR Ser. Mat., 34:1 (1970),  218–247
  58. Description of the spaces $L_p^r(R^n)$ in terms of singular difference integrals

    Mat. Sb. (N.S.), 81(123):1 (1970),  79–91
  59. Compactness of sets of differentiable functions

    Trudy Mat. Inst. Steklov., 105 (1969),  168–177
  60. Generalized Liouville differentiation and the multiplier method in the theory of imbeddings of classes of differentiable functions

    Trudy Mat. Inst. Steklov., 105 (1969),  89–167
  61. Generalized Liouville differentiation and the method of multiplicators in imbedding theory for function classes

    Mat. Zametki, 4:4 (1968),  467–482
  62. Generalized Hölder spaces $B^{(r)}_{p,\theta}$ and their correlations with the Sobolev spaces $L_p^{(r)}$

    Sibirsk. Mat. Zh., 9:5 (1968),  1127–1152
  63. Singular integral operators and sequences of convolutions in $L_p$ spaces

    Mat. Sb. (N.S.), 73(115):1 (1967),  65–88
  64. On multipliers of Fourier integrals in the spaces $L_{p,\theta}$

    Trudy Mat. Inst. Steklov., 89 (1967),  231–248
  65. Theorems of Littlewood–Paley type for multiple Fourier integrals

    Trudy Mat. Inst. Steklov., 89 (1967),  214–230
  66. Nonisotropic Bessel potentials. Imbedding theorems for the Sobolev space $L_p^{(r_1,\dots,r_n)}$ with fractional derivatives

    Dokl. Akad. Nauk SSSR, 170:3 (1966),  508–511
  67. The $L_p$-estimates of a certain class of non-isotropically singular integrals

    Dokl. Akad. Nauk SSSR, 169:6 (1966),  1250–1253
  68. Fourier transformation in Besov spaces. The zero scale of $B^0_{p,\theta}$

    Dokl. Akad. Nauk SSSR, 163:6 (1965),  1318–1321
  69. Bounds for trigonometrical integrals and an inequality of Bernstein for fractional derivatives

    Izv. Akad. Nauk SSSR Ser. Mat., 29:1 (1965),  109–126
  70. Classification of differentiable functions on the basis of spaces with dominant mixed derivatives

    Trudy Mat. Inst. Steklov., 77 (1965),  143–167
  71. Some inequalities for functions of weight classes and boundary-value problems with strong degeneracy on the boundary

    Dokl. Akad. Nauk SSSR, 159:3 (1964),  512–515
  72. Functions of Hirschman type and relations between the spaces $B_p^r(E_n)$ and $L_p^r(E_n)$

    Mat. Sb. (N.S.), 63(105):4 (1964),  505–535
  73. $(L_p,L_q)$-multipliers of Fourier integrals

    Dokl. Akad. Nauk SSSR, 152:4 (1963),  808–811
  74. Characteristics of boundary values of functions of $L^r_p(E_n)$ on hyperplanes

    Dokl. Akad. Nauk SSSR, 150:5 (1963),  984–986
  75. Generalized Liouville differentiation and the functional spaces $L_p^r(E_n)$. Imbedding theorems

    Mat. Sb. (N.S.), 60(102):3 (1963),  325–353
  76. $L_p^r(\Omega)$ spaces. Continuation and imbedding theorems

    Dokl. Akad. Nauk SSSR, 145:3 (1962),  527–530
  77. Imbedding theorems for functions of $L_p^r$

    Dokl. Akad. Nauk SSSR, 143:5 (1962),  1042–1045
  78. The Green's $E$-function of a Beltrami operator and some variational problems

    Dokl. Akad. Nauk SSSR, 139:5 (1961),  1052–1055
  79. Certain boundary-value problems for elliptic equations with strong degeneration at the boundary

    Dokl. Akad. Nauk SSSR, 137:5 (1961),  1015–1018
  80. The Dirichlet principle for the Beltrami equation in a semi-space

    Dokl. Akad. Nauk SSSR, 134:4 (1960),  761–764
  81. Boundary properties of functions from “weight” classes

    Dokl. Akad. Nauk SSSR, 132:3 (1960),  514–517

  82. Lev Dmitrievich Kudryavtsev (on his seventieth birthday)

    Uspekhi Mat. Nauk, 48:4(292) (1993),  242–244
  83. Sergei Mikhailovich Nikol'skii (On occasion of eighty fifth birthday)

    Trudy Mat. Inst. Steklov., 201 (1992),  3–13
  84. Ivan Aleksandrovich Kipriyanov (on his sixtieth birthday)

    Uspekhi Mat. Nauk, 39:2(236) (1984),  213–214
  85. Lev Dmitrievich Kudryavtsev (on his sixtieth birthday)

    Uspekhi Mat. Nauk, 38:3(231) (1983),  205–210
  86. Intgegral transformations of generalized functions: Yu. A. Brychkov and A. P. Prudnikov. 286 p. “Nauka”, Moscow, 1977. Book review

    Zh. Vychisl. Mat. Mat. Fiz., 18:4 (1978),  1063–1064
  87. Владимир Михайлович Шалов (некролог)

    Differ. Uravn., 13:6 (1977),  1149–1153
  88. The Fifth Soviet–Czechoslovak Meeting on Applications of Methods of Function Theory and Functional Analysis for Problems of Mathematical Physics

    Uspekhi Mat. Nauk, 32:3(195) (1977),  217–225
  89. Vladimir Iosifovich Kondrashov (obituary)

    Uspekhi Mat. Nauk, 27:2(164) (1972),  149–155
  90. Methods of Mathematical Physics, Vol. 2. Partial Differential Equations. Book Review

    Zh. Vychisl. Mat. Mat. Fiz., 3:2 (1963),  411–412


© Steklov Math. Inst. of RAS, 2025