RUS  ENG
Full version
PEOPLE

Mazhukin Vladimir Ivanovich

Publications in Math-Net.Ru

  1. Modification of the Wilson–Frankel kinetic model and atomistic simulation of the rate of melting/crystallization of metals

    Matem. Mod., 35:11 (2023),  103–121
  2. Non-equilibrium characteristics of heat transfer of copper in a wide temperature range

    Matem. Mod., 34:10 (2022),  65–80
  3. Atomistic simulation of the coexistence of liquid-vapor phase states for gold and determination of critical parameters

    Matem. Mod., 34:3 (2022),  101–116
  4. Determination of thermal properties of gold in the region of melting-crystallization phase transition. Molecular dynamic approach

    Matem. Mod., 34:1 (2022),  59–80
  5. Atomistic modeling of the propagation of the melting/crystallization front for metals based on the generalization of the modified transition state theory

    Keldysh Institute preprints, 2021, 090, 20 pp.
  6. Atomistic modeling of the parameters of the critical region of gold using the liquid-vapor coexistence curve

    Keldysh Institute preprints, 2021, 083, 16 pp.
  7. Molecular dynamic modeling of thermal hysteresis of gold

    Keldysh Institute preprints, 2021, 081, 11 pp.
  8. Analysis of the error of approximation of two-layer difference schemes for the Korteweg de Vries equation

    Keldysh Institute preprints, 2021, 001, 17 pp.
  9. Atomistic modeling of the characteristics of the phonon subsystem of copper in a wide temperature range

    Keldysh Institute preprints, 2020, 033, 22 pp.
  10. Molecular dynamic modeling of thermophysical properties of copper in the region of the melting point

    Keldysh Institute preprints, 2018, 066, 18 pp.
  11. Kinetic melting and crystallization stages of strongly superheated and supercooled metals

    Matem. Mod., 28:12 (2016),  83–94
  12. Analytical approximation of the Fermi–Dirac integrals of half-integer and integer orders

    Matem. Mod., 28:11 (2016),  55–63
  13. Modeling of thin film explosive boiling process during homogeneous sub-second heating

    Matem. Mod., 26:3 (2014),  125–136
  14. Explosive boiling of metals upon irradiation by a nanosecond laser pulse

    Kvantovaya Elektronika, 44:4 (2014),  283–285
  15. Molecular-dynamic modeling of processes of heating and melting of metals.
    Part II. Computational experiment


    Keldysh Institute preprints, 2012, 032, 25 pp.
  16. Molecular-dynamic modeling of processes of heating and melting of metals.
    Part I. Model and computational algorithm


    Keldysh Institute preprints, 2012, 031, 27 pp.
  17. Mathematical modeling of dynamics of fast phase transitions and overheated metastable states during nano- and femtosecond laser treatment of metal targets

    Matem. Mod., 21:11 (2009),  99–112
  18. Dynamic adaptation method in gasdynamic simulations with nonlinear heat conduction

    Zh. Vychisl. Mat. Mat. Fiz., 48:11 (2008),  2067–2080
  19. Modeling of shock waves interaction on dynamically adapting grids

    Matem. Mod., 19:11 (2007),  83–95
  20. Pulse time profile influence on laser processing

    Matem. Mod., 19:9 (2007),  54–78
  21. Dynamic adaptation for parabolic equations

    Zh. Vychisl. Mat. Mat. Fiz., 47:11 (2007),  1913–1936
  22. Dynamically adapted grids for interacting discontinuous solutions

    Zh. Vychisl. Mat. Mat. Fiz., 47:4 (2007),  717–737
  23. Mathematical simulation of the spectrum of a nonequilibrium laser plasma

    Kvantovaya Elektronika, 36:2 (2006),  125–133
  24. Mathematical simulation of laser induced melting and evaporation of multilayer materials

    Zh. Vychisl. Mat. Mat. Fiz., 46:5 (2006),  887–901
  25. Kinetics of optical breakdown of aluminum vapor in wide frequency range. Modern state of the problem

    Matem. Mod., 17:12 (2005),  27–79
  26. Plasma-mediated surface evaporation of an aluminium target in vacuum under UV laser irradiation

    Kvantovaya Elektronika, 35:5 (2005),  454–466
  27. Plasma dynamics in air during laser shock processing of materials

    Matem. Mod., 15:2 (2003),  23–42
  28. On possible manifestations of the induced transparency during laser evaporation of metals

    Kvantovaya Elektronika, 33:9 (2003),  771–776
  29. Optical breakdown of aluminum vapor in the ultraviolet range

    Matem. Mod., 14:4 (2002),  3–20
  30. Monotone difference schemes for equations with mixed derivative

    Matem. Mod., 13:2 (2001),  17–26
  31. Dynamic adaptation method for a laminar combustion problem

    Zh. Vychisl. Mat. Mat. Fiz., 41:4 (2001),  648–661
  32. Difference schemes on irregular grids for equations of mathematical physics with variable coefficients

    Zh. Vychisl. Mat. Mat. Fiz., 41:3 (2001),  407–419
  33. Finite-difference schemes for the Korteweg–de Vries equation

    Differ. Uravn., 36:5 (2000),  709–716
  34. Analysis of temperature and thermal stress fields in pulse treatment of semiconductors

    Matem. Mod., 12:2 (2000),  75–83
  35. Invariant difference schemes for differential equations with transformation of the independent variables

    Dokl. Akad. Nauk, 352:5 (1997),  602–605
  36. Effect of gas-dynamic peturbations on vaporisation process due to modulated heat source

    Matem. Mod., 9:4 (1997),  11–26
  37. Invariant difference schemes for equations of mathematical physics in nonstationary coordinate systems

    Differ. Uravn., 32:12 (1996),  1691–1700
  38. Method for dynamic adaptation in problems of gas dynamiks

    Matem. Mod., 7:12 (1995),  48–78
  39. Entropy variation on evaporation front

    Matem. Mod., 6:11 (1994),  3–10
  40. Influence of melting-cristallization processes on shape of photoacoustic pulse during laser-irradiation of highly absorbing condensed media

    Matem. Mod., 6:1 (1994),  3–53
  41. The dynamic adaptation method in the Burgers problem

    Dokl. Akad. Nauk, 333:2 (1993),  165–169
  42. The analysis of nonequilibrium phenomena during laser action on metal vapors

    Matem. Mod., 5:11 (1993),  3–32
  43. About gas-dynamical boundary conditions on evaporation front

    Matem. Mod., 5:6 (1993),  3–10
  44. Influence of metastable states on process of pulse laser treatment of superconducting ceramics

    Matem. Mod., 5:5 (1993),  30–60
  45. Influence of temperature – dependent thermodynamic, optical characteristics and equation of state of laser – irradiated metal on shape of photoacoustic pulse

    Matem. Mod., 5:5 (1993),  3–29
  46. Method of dynamical adaption for evolution-type problems with high gradients

    Matem. Mod., 5:4 (1993),  32–56
  47. On a hydrodynamic variant on the Stefan problem for matter in a metastable state

    Dokl. Akad. Nauk SSSR, 320:5 (1991),  1088–1092
  48. Computational algorythm of a hydrodynamical version of Stefan problem by dynamic adapting grid

    Matem. Mod., 3:10 (1991),  104–115
  49. The principles of dinamical adapting to solve grid construction into one-dimensial boundary problems

    Matem. Mod., 2:3 (1990),  101–118
  50. Numerical calculations of temperature waves with weak discontinuities on nets with dynamic adaptation

    Differ. Uravn., 25:7 (1989),  1188–1193
  51. Mathematical modelling of non-stationary two-dimensional boundary value problems on dynamically adapted meshes

    Matem. Mod., 1:3 (1989),  29–43
  52. The finite-difference method for solving one-dimensional equations of gas dynamics on adaptive grids

    Dokl. Akad. Nauk SSSR, 302:5 (1988),  1078–1081
  53. An approach to the construction of adaptive difference grids

    Dokl. Akad. Nauk SSSR, 298:1 (1988),  64–68
  54. A finite-difference method for solving the equations of gas dynamics using adaptive grids which are dynamically connected with the solution

    Zh. Vychisl. Mat. Mat. Fiz., 28:8 (1988),  1210–1225
  55. An approach to adaptive grid construction for non-stationary problems

    Zh. Vychisl. Mat. Mat. Fiz., 28:3 (1988),  454–460
  56. Mathematical modeling of the Stefan problem on an adaptive net

    Differ. Uravn., 23:7 (1987),  1154–1160
  57. On some features of a mathematical model of the intense surface evaporation of matter

    Dokl. Akad. Nauk SSSR, 281:4 (1985),  830–833
  58. An algorithm for the numerical solution of a problem of surface mass evaporation by laser radiation

    Zh. Vychisl. Mat. Mat. Fiz., 25:11 (1985),  1697–1709
  59. Mathematical simulation of the processes of the surface evaporation under laser radiation

    Dokl. Akad. Nauk SSSR, 278:4 (1984),  843–847
  60. Kinetics of a phase transition during laser evaporation of a metal

    Kvantovaya Elektronika, 11:12 (1984),  2432–2437
  61. Low-temperature laser plasmas near metal surfaces in high-pressure gases (review)

    Kvantovaya Elektronika, 10:4 (1983),  679–701
  62. Solution of two-dimensional non-stationary problems of the dynamics of a radiating gas

    Zh. Vychisl. Mat. Mat. Fiz., 23:5 (1983),  1177–1185
  63. Optical breakdown of molecular nitrogen in a wide range of pressures near a solid target

    Kvantovaya Elektronika, 9:5 (1982),  906–917
  64. Numerical modeling of a two-dimensional problem on the plasma discharge propagation

    Zh. Vychisl. Mat. Mat. Fiz., 22:1 (1982),  171–177
  65. On the propagation of low-temperature laser plasma in high-pressure nitrogen medium

    Dokl. Akad. Nauk SSSR, 257:3 (1981),  584–589
  66. Numerical simulation of laser plasma dynamics in high-pressure medium near a solid target

    Dokl. Akad. Nauk SSSR, 256:5 (1981),  1100–1105
  67. Numerical investigation of the problem of a laser discharge in a dense gas

    Zh. Vychisl. Mat. Mat. Fiz., 20:2 (1980),  451–460
  68. Modeling of dense molecular gas breakdown by laser radiation near a metallic surface

    Dokl. Akad. Nauk SSSR, 246:6 (1979),  1338–1342


© Steklov Math. Inst. of RAS, 2024