Основные работы посвящены теории ветвления решений нелинейных уравнений. Доказаны общие теоремы существования точек, кривых и поверхностей бифуркации путем исследования уравнения разветвления, приведенного к канонической форме, с помощью комбинации аналитических, топологических и алгебраических методов. В методе доказательства этих теорем важную роль играет изучение жордановой структуры линеаризованной задачи, применение индекса Кронекера–Пуанкаре, индекса Морса–Конли и отыскание точек условного экстремума определенных функций, отвечающих уравнению разветвления. Метод применим и в случае векторного параметра, когда точки бифуркации решения могут заполнять кривые или поверхности, позволяет построить асимптотику соответствующих ветвей решения и исследовать их устойчивость. Общая теория применена к задаче о ветвлении решений классов нелинейных эллиптических уравнений и в приложениях (например, доказаны теоремы существования и построена асимптотика решений краевой задачи Кармана для систем с бигармоническим оператором, построены решения интегрального уравнения компенсации из теории сверхпроводимости, проведен бифуркационный анализ некоторых задач для кинетических систем Власова–Максвелла, описывающих поведение многокомпонентной плазмы). Проведен анализ появления свободных параметров в разветвляющихся решениях общих классов нелинейных уравнений в банаховых пространствах на основе построенной для этой цели теории сплетаемых уравнений разветвления. Разработаны основы теории итерационных методов в окрестности точек ветвления решений нелинейных уравнений в банаховых пространствах, предложены методы последовательных приближений с явной и неявной параметризацией ветвей, в том числе наиболее универсальный N-ступенчатый итерационный метод с явным указанием униформизации ветвей решения и начального приближения; даны методы регуляризации вычислений в окрестности точек ветвления, обеспечивающие равномерную аппроксимацию ветвей решения. Построены основы теории дифференциально-операторных уравнений (обыкновенных и в частных производных) в банаховых пространствах с необратимым оператором при главной части: доказаны теоремы существования в линейном и нелинейном случаях; предложены способы сведения этой задачи к обыкновенным дифференциальным уравнениям бесконечного порядка, к "скалярным" интегральным уравнениям, к дифференциальным уравнениям с особой точкой; разработан метод построения классических и обобщенных решений на основе исследования жордановой структуры операторных коэффициентов линеаризации исходного уравнения. Всего опубликовано более 100–работ по математике (см. рефераты статей в Math.l Rev. 87a:58036, 98f:47069, 98d:35221, 96k:65042, 95c:47079, 93m:82047, 93a:47054, 92i:47077, 90m:58033, 89i:45018, 85j:34139, 85b:34072, 82a:47011 и др.).
Основные публикации:
N. Sidorov, D. Sidorov, A. Sinitsyn, Toward General Theory of Differential-Operator and Kinetic Models, World Scientific Series on Nonlinear Science Series A, 97, eds. Leon O Chua (University of California at Berkeley, USA), World Scientific Series, Singapore, 2020 , 496 pp
Nikolay Sidorov, Boris Loginov, et al Lyapunov-Schmidt methods in nonlinear analysis and applications, Mathematics and its Applications, 550, Kluwer Academic Publishers, Dordrecht, 2002