|
ПЕРСОНАЛИИ |
Зайцев Андрей Юрьевич |
старший научный сотрудник |
доктор физико-математических наук (1989) |
В начале своей научной деятельности А.Ю. Зайцев занимался решением задачи, поставленной в середине 50-х годов А.Н. Колмогоровым. Ему удалось получить правильную по порядку оценку точности безгранично делимой аппроксимации распределений сумм независимых случайных величин, распределения которых сосредоточены на отрезках малой длины $\tau$ с точностью до малой вероятности $p$. Оказалось, что точность аппроксимации в метрике Леви имеет порядок $p + \tau \log(1/\tau )$, что значительно точнее как первоначального результата А.Н. Колмогорова $p^{1/5}+ \tau ^{1/2} \log^{1/4} (1/\tau )$, так и полученных позднее результатов других авторов. В качестве приближающих использовались так называемые сопровождающие безгранично делимые распределения. Более того, как показал Т.В. Арак, оценка оказалась правильной по порядку. В 1986 году в Трудах МИАН была опубликована совместная монография Т.В. Арака и А.Ю. Зайцева, содержащая изложение этих результатов. Позднее А.Ю. Зайцев (1989) показал, что аналогичная оценка справедлива и в многомерном случае, причем вместо абсолютной константы в оценке появляется множитель $c(d)$, зависящий только от размерности $d$. В процессе доказательства было установлено, что при $p = 0$ (то есть когда нормы слагаемых ограничены постоянной $\tau $ с вероятностью единица) для любого $\lambda > 0$ случайный вектор $X$, имеющий то же распределение, как рассматриваемая сумма, может быть так построен на одном вероятностном пространстве с соответствующим гауссовским вектором $Y$, что ${\mathbf P}(\|X – Y \|>\lambda)\le c_1(d)\exp(–\lambda /c_2(d)\tau )$. Более того, А.Ю. Зайцев (1986) доказал, что такой же результат справедлив для векторов с распределениями из введенного им некоторого класса $A_d(\tau)$ распределений с достаточно медленно растущими семиинвариантами, содержащего, в частности, произвольные безгранично делимые распределения со спектральными мерами, сосредоточенными на шаре радиуса $c\tau$ с центром в нуле. Другой важный частный случай оценки точности безгранично делимой аппроксимации получается при $\tau = 0$, когда правая часть оценки равномерного расстояния между функциями распределения $\rho(\,\cdot\,,\,\cdot\,)$ имеет вид $c(d)p$. В работе, опубликованной в 2003 году в Записках научных семинаров ПОМИ, этот результат интерпретируется как общая оценка точности аппроксимации выборки, составленной из неодинаково распределенных редких событий общего вида, пуассоновским точечным процессом. Некоторые оптимальные оценки получены в других работах для равномерного расстояния в общем случае. В частности, в одномерном случае удалось получить простые формулировки результатов, из которых одновременно вытекают как правильные по порядку оценки точности безгранично делимой аппроксимации сверток сопровождающими законами, так и весьма общие оценки в центральной предельной теореме. Поскольку "хвосты" распределений слагаемых произвольны, результаты охватывают и популярный в последнее время случай так называемых "тяжелых хвостов" распределений слагаемых.
Аналогичными методами был также получен следующий парадоксальный результат. Существует такая зависящая только от размерности $d$ величина $c(d)$, что для любого симметричного распределения $F$ и любого натурального $n$ равномерное расстояние между степенями в смысле свертки $F^n$ допускает оценки $\rho(F^n,F^{n+1})\le c(d)n^{-1/2}$ и $\rho(F^n,F^{n+2})\le c(d)n^{-1}$, причем обе оценки имеют неулучшаемый порядок.
В недавних совместных работах большинство из упомянутых выше результатов было перенесено на значения распределений в гильбертовом пространстве на выпуклых многогранниках. Константы при этом зависят только от числа полупространств, участвующих в определении многогранника.
В недавно опубликованной статье был получен следующий аналогичный общий результат о близости последовательных сверток произвольных конечномерных вероятностных распределений. Пусть $ \rho_{\mathcal{C}_d}(F,G) = \sup_A |F\{A\} - G\{A\}| $, где верхняя грань берется по всем выпуклым подмножествам $\mathbb R^d$. Для любого нетривиального распределения $F$ существует $c_1(F)$, такое что $$ \rho_{\mathcal{C}_d}(F^n, F^{n+1})\leq \frac{c_1(F)}{\sqrt n} $$ для любого натурального $n$. Распределение $F$ считается тривиальным, если оно сосредоточено на гиперплоскости, не содержащей начало координат. Очевидно, что для таких $F$ $ \rho_{\mathcal{C}_d}(F^n, F^{n+1}) = 1 $. Аналогичный результат получен и для расстояния Прохорова. Для любого $d$-мерного распределения $F$ существует $c_2(F)>0$, зависящее только от $F$ и такое, что \begin{multline}\nonumber (F^n)\{A\}\le (F^{n+1})\{A^{c_2(F)}\}+\frac{c_2(F)}{\sqrt{n}}\ \ \text{и}\quad (F^{n+1})\{A\}\leq (F^n)\{A^{c_2(F)}\}+\frac{c_2(F)} {\sqrt{n}} \end{multline} для любого борелевского множества $A$ для всех натуральных чисел $n$. Здесь $A^{\varepsilon }$ – $\varepsilon $-окрестность множества $A$.
Применяя теорему Штрассена-Дадли, отсюда можно вывести следующее утверждение. Для любого $d$-мерного распределения $F$ найдется величина $c_3(F)$, зависящая только от $F$ и такая что для любого натурального $n$ можно построить на одном вероятностном пространстве случайные векторы $\xi_n $ и $\eta_n $ с $\mathcal{L}(\xi_n )=F^{n+1}$ и $\mathcal{L}(\eta_n )=F^n$, так что $ \mathbf{P}\left\{ \Vert \xi_n -\eta_n \Vert >c_3(F) \right\} \le \frac{c_3(F)}{\sqrt{n}} $. Следовательно, справедлива оценка расстояния Прохорова $\pi(\mathcal{L}(\xi_n/\sqrt{n} ), \mathcal{L}(\eta_n/\sqrt{n} ))\leqslant {c_3(F)}/{\sqrt{n}}$.
Удалось также дать отрицательный ответ на вопрос А.Н. Колмогорова и Ю.В. Прохорова о возможности безгранично делимой аппроксимации распределений сумм независимых одинаково распределенных случайных величин в смысле расстояния по вариации. Было построено такое одномерное вероятностное распределение, все $n$-кратные свертки которого равномерно отделены от множества безгранично делимых законов в смысле расстояния по вариации не менее чем на расстояние $1/14$.
Наиболее существенным результатом, полученным в 90-е годы, является многомерный вариант классического одномерного результата Комлоша, Майора и Тушнади (1975) об оценке точности сильной гауссовской аппроксимации сумм независимых одинаково распределенных случайных величин при существовании экспоненциальных моментов у слагаемых. При этом в явном виде указана зависимость постоянных от размерности и распределений слагаемых. Тем самым, решена задача, стоявшая более 20 лет. Несколько позднее результат удалось обобщить на случай разнораспределенных слагаемых и получить полный многомерный аналог одномерных результатов А.И. Саханенко 1984 года. Эти результаты докладывались в приглашенном докладе на Международном математическом конгрессе в Пекине (2002). Позднее были получены оценки точности сильной гауссовской аппроксимации сумм независимых $d$-мерных случайных векторов $X_j$ с конечными моментами вида ${\mathbf E} H(\|X_j\|)$, где $H$ – монотонная функция, растущая не медленнее, чем $x^2$ и не быстрее, чем $\exp(cx)$. Получены многомерные обобщения и уточнения результатов Комлоша, Майора и Тушнади (1975), А.И. Саханенко (1985) и У. Айнмаля (1989). В частном случае, когда $H(x) = x^\gamma$, $\gamma > 2$, в совместной работе с Ф. Гётце получены оптимальные по порядку оценки для одинаково распределенных слагаемых. В совместной работе 2011 года рассмотрен и бесконечномерный случай.
В работе А.Ю. Зайцева 1994 года для любого $\varepsilon>0$ построены такие двумерные распределения, что расстояние по вариации между их проекциями на произвольное одномерное направление не превосходят $\varepsilon$, хотя равномерное расстояние между соответствующими двумерными функциями распределения равно $1/2$. Это свидетельствует о неустойчивости обращения преобразования Радона многомерных вероятностных распределений. Существуют распределения, практически неразличимые методами томографии и в то же время далекие друг от друга.
В 2003–2005 годах А.Ю. Зайцев получил новые оценки точности сильной аппроксимации $L_1$-нормы центрированных и нормированных ядерных оценок плотности. При этом предполагалось, что ядро ограничено и имеет ограниченный носитель. Рассмотрены различные естественные классы плотностей, с ограничениями на гладкость, рост, убывание и размеры носителя. Получены оценки расстояния Прохорова и размеров зон, в которых справедлива нормальная аппроксимация для вероятностей больших уклонений. В совместной работе с Э. Жине и Д. Мейсоном (2003) центральная предельная теорема для $L_1$-нормы центрированных и нормированных ядерных оценок произвольной плотности перенесена на процессы, индексированные ядрами.
В предположении, что независимые одинаково распределенные многомерные случайные слагаемые имеют нулевые математические ожидания и конечные моменты четвертого порядка, А.Ю. Зайцев (2010, 2014, совместно с Ф. Гётце) показал, что для множеств, ограниченных поверхностями второго порядка, точность аппроксимации короткими асимптотическими разложениями в центральной предельной теореме имеет порядок $O(1/N)$, где $N$ – число слагаемых при условии, что размерность пространства не ниже пяти. Ранее аналогичные утверждения были получены в 1997 году в совместной работе Ф. Гётце и В. Бенткуса при условии, что размерность пространства не ниже девяти. В работе Ф. Гётце и А.Ю. Зайцева девять заменено на пять, причем дальнейшее понижение размерности невозможно. Получены также новые явные простые выражения для степенной зависимости соответствующих констант от моментов четвертого порядка и от собственных чисел ковариационного оператора конечномерных слагаемых. Оценки равномерны относительно изометричных операторов, участвующих в определении поверхностей.
В последние годы опубликовано несколько совместных работ А.Ю. Зайцева об оценивании функций концентрации распределений сумм независимых случайных величин. Для решения задачи Колмогорова об аппроксимации $n$-кратных сверток одномерных вероятностных распределений безгранично делимыми законами Арак использовал новые оценки для функций концентрации сумм независимых случайных величин. Эти оценки были сформулированы в терминах арифметической структуры носителей распределений слагаемых. Было показано, что если функция концентрации суммы велика, то носители распределений слагаемых сосредоточены вблизи некоторого множества с нетривиальной арифметической структурой. В недавно опубликованной работе Ф. Гётце, Ю.С. Елисеевой и А.Ю. Зайцева (2017) показано, что результаты Арака позволяют получить оценки функций концентрации $Q$ взвешенных сумм независимых одинаково распределенных случайных величин $S_a=\sum\limits_{k=1}^{n}a_k X_k$ в проблеме Литтлвуда-Оффорда, В этом случае мы имеем дело с суммами неодинаково распределенных случайных величин с распределениями специального вида. Получены оценки, имеющие неасимптотический характер, справедливые без дополнительных предположений, выраженных в терминах количества слагаемых $n$, типа условия $Q(\mathcal L(S_a), \tau)\ge n^{-A}$, предполагаемого в формулировке введенного в работах Нгуена, Тао и Ву так называемого "обратного принципа" в проблеме Литтлвуда-Оффорда. Исследована взаимосвязь этих оценок. В работе показано, что из результатов Арака вытекают следствия, которые можно интерпретировать как проявления обратного принципа для проблемы Литтлвуда-Оффорда. Часть из них имеет непустое пересечение с результатами Нгуена, Тао и Ву, в которых обсуждается арифметическая структура коэффициентов $a_1,\ldots,a_n$ при условии $Q(\mathcal L(S_a), \tau)\ge n^{-A}$, где $A$ -- некоторая положительная константа.