RUS  ENG
Full version
PEOPLE

Kozlov Vladimir Arkad'evich

Publications in Math-Net.Ru

  1. On the first bifurcation of Stokes waves

    Algebra i Analiz, 36:2 (2024),  70–92
  2. On rotational waves of greatest height on water of finite depth

    Funktsional. Anal. i Prilozhen., 55:2 (2021),  107–112
  3. Floquet problem and center manifold reduction for ordinary differential operators with periodic coefficients in Hilbert spaces

    Algebra i Analiz, 32:3 (2020),  191–218
  4. Pressure drop matrix for a bifurcation with defects

    Eurasian Journal of Mathematical and Computer Applications, 7:3 (2019),  33–55
  5. Trapped modes in armchair graphene nanoribbons

    Zap. Nauchn. Sem. POMI, 483 (2019),  85–115
  6. A comparison theorem for super- and subsolutions of $\nabla^2u+f(u)=0$ and its application to water waves with vorticity

    Algebra i Analiz, 30:3 (2018),  112–128
  7. A one-dimensional model of flow in a junction of thin channels, including arterial trees

    Mat. Sb., 208:8 (2017),  56–105
  8. Model of saccular aneurysm of the bifurcation node of the artery

    Zap. Nauchn. Sem. POMI, 461 (2017),  174–194
  9. Transmission conditions in a one-dimensional model of bifurcating blood vessel with an elastic wall

    Zap. Nauchn. Sem. POMI, 438 (2015),  138–177
  10. A simple one-dimensional model of a false aneurysm in the femoral artery

    Zap. Nauchn. Sem. POMI, 426 (2014),  64–86
  11. Asymptotic models of the blood flow in arterias and veins

    Zap. Nauchn. Sem. POMI, 409 (2012),  80–106
  12. The spectrum asymptotics for the Dirichlet problem in the case of the biharmonic operator in a domain with highly indented boundary

    Algebra i Analiz, 22:6 (2010),  127–184
  13. Uniqueness of the solution to an inverse thermoelasticity problem

    Zh. Vychisl. Mat. Mat. Fiz., 49:3 (2009),  542–548
  14. On the spectrum of an operator pencil generated by the Neumann problem in a cone

    Algebra i Analiz, 3:2 (1991),  111–131
  15. Behavior of solutions of elliptical boundary problems at an angle

    Mat. Zametki, 49:1 (1991),  56–62
  16. On the spectrum of the operator pencil generated by the Dirichlet problem in a cone

    Mat. Sb., 182:5 (1991),  638–660
  17. On the spectrum of a pencil generated by the Dirichlet problem for an elliptic equation in an angle

    Sibirsk. Mat. Zh., 32:2 (1991),  74–87
  18. An iterative method for solving the Cauchy problem for elliptic equations

    Zh. Vychisl. Mat. Mat. Fiz., 31:1 (1991),  64–74
  19. The Dirichlet problem for elliptic equations in domains with conical points

    Differ. Uravn., 26:6 (1990),  1014–1023
  20. Iterative procedures for solving ill-posed boundary value problems that preserve the differential equations

    Algebra i Analiz, 1:5 (1989),  144–170
  21. Singularities of solutions of the Dirichlet problem for elliptic equations in a neighborhood of corner points

    Algebra i Analiz, 1:4 (1989),  161–177
  22. The strong zero theorem for an elliptic boundary value problem in a corner

    Dokl. Akad. Nauk SSSR, 309:6 (1989),  1299–1301
  23. On sign variation and the absence of “strong” zeros of solutions of elliptic equations

    Izv. Akad. Nauk SSSR Ser. Mat., 53:2 (1989),  328–344
  24. On the spectrum of an operator pencil generated by the Dirichlet problem for an elliptic equation at a corner point

    Mat. Zametki, 45:5 (1989),  117–118
  25. The strong zero theorem for an elliptic boundary value problem in an angle

    Mat. Sb., 180:6 (1989),  831–849
  26. Spectral properties of the operator bundles generated by elliptic boundary-value problems in a cone

    Funktsional. Anal. i Prilozhen., 22:2 (1988),  38–46
  27. The Green function and Poisson kernels of a parabolic problem in a domain with a conical point

    Uspekhi Mat. Nauk, 43:3(261) (1988),  183–184
  28. Asymptotics as $t\to0$ for solutions of the heat equation in a domain with a conical point

    Mat. Sb. (N.S.), 136(178):3(7) (1988),  384–395
  29. Coefficients in the asymptotics of the solutions of initial-boundary value parabolic problems in domains with a conic point

    Sibirsk. Mat. Zh., 29:2 (1988),  75–89
  30. Singularities of solutions of the first boundary value problem for the heat equation in domains with conical points. II

    Izv. Vyssh. Uchebn. Zaved. Mat., 1987, no. 3,  37–44
  31. Singularities of solutions of the first boundary value problem for the heat equation in domains with conical points

    Izv. Vyssh. Uchebn. Zaved. Mat., 1987, no. 2,  38–46
  32. Estimates of the remainder in formulas for the asymptotic behavior of the spectrum for linear operator bundles

    Funktsional. Anal. i Prilozhen., 17:2 (1983),  80–81

  33. Letter to the editors

    Mat. Sb., 209:6 (2018),  146
  34. Mikhail Zakharovich Solomyak (obituary)

    Uspekhi Mat. Nauk, 72:5(437) (2017),  181–186


© Steklov Math. Inst. of RAS, 2025