RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

1981, Volume 113

| General information | Contents | Forward links |


Investigations on linear operators and function theory. Part XI


Invariant subspaces of the shift operator. Axiomatic approach
A. B. Aleksandrov
7
Analytic continuation from a continuum to its neighborhood
A. L. Varfolomeev
27
Control subspaces of minimal dimension. Elementary introduction. Discotheca
V. I. Vasyunin, N. K. Nikol'skii
41
On singularities of summable functions
A. B. Gulisashvili
76
Uncertainty principle for operators commuting with translations. II
B. Jöricke, V. P. Khavin
97
Two remarks concerning the equation $\Pi_p(X,\cdot)=I_p(X,\cdot)$
S. V. Kislyakov
135
Singular spectrum of a non-self-adjoint operator
S. N. Naboko
149
Estimates in the Carleson corona theorem, ideals of the algebra $H^\infty$, a problem of S.-Nagy
V. A. Tolokonnikov
178
Simple proof of a theorem on removable singularities of analytic functions satisfying a Lipschitz condition
S. V. Khrushchev
199

Short communications
Gleason parts and Choquet boundary of a function algebra on a convex compactum
E. L. Arenson
204
Free interpolation in Bergman spaces
S. A. Vinogradov
208
Free interpolation in $H^\infty$ a la P. Jones
S. A. Vinogradov, E. A. Gorin, S. V. Khrushchev
212
Interpolation by analytic functions from Besov spaces $B_p^0$
S. A. Vinogradov, A. M. Kotochigov
215
Distances between certain symmetric spaces
E. D. Gluskin
218
Harmonic analysis of functions bounded on the right half-axis and increasing on the left
V. P. Gurarii
225
Extension of functions from Sobolev spaces
V. G. Maz'ya
231
For which $p$ and $r$ is the equation $\Pi_p(L^r,\cdot)=I_p(L^r,\cdot)$ true?
N. G. Sidorenko
237
Isomorphisms of spaces of bounded continuous functions
T. E. Khmyleva
243
Extension theorems with preservation of local approximation properties of functions in the nonisotropic case
P. A. Shvartsman
247
Sets of zeros of analytic functions from the space $B_{p,1}^{1/p}$ are carlesonian
N. A. Shirokov
253
Modulus of boundary values of analytic functions of class $\Lambda^n_\omega$
N. A. Shirokov
258
Counterexample to a uniqueness theorem foranalytic operator functions
D. R. Yafaev
261

Letter to the Editor
272


© Steklov Math. Inst. of RAS, 2025