RUS  ENG
Full version
PEOPLE

Damaskinsky Eugeniy Viktorovich

Publications in Math-Net.Ru

  1. Realization by a differential operator of the annihilation operator for generalized Chebyshev oscillator

    Zap. Nauchn. Sem. POMI, 494 (2020),  75–102
  2. Calculating the Mandel parameter for an oscillator-like system generated by generalized Chebyshev polynomials

    Zap. Nauchn. Sem. POMI, 493 (2020),  73–87
  3. Local perturbation of the discrete Schrödinger operator and a generalized Chebyshev oscillator

    TMF, 200:3 (2019),  494–506
  4. On differential operators for Chebyshev polynomials of several variables

    Zap. Nauchn. Sem. POMI, 473 (2018),  99–109
  5. The generating function of bivariate Chebyshev polynomials associated with the Lie algebra $G_2$

    TMF, 192:2 (2017),  207–220
  6. Invariance of the generalized oscillator under a linear transformation of the related system of orthogonal polynomials

    TMF, 190:2 (2017),  267–276
  7. Orthogonal polynomials and deformed oscillators

    TMF, 185:1 (2015),  68–76
  8. The discrete spectrum of Jacobi matrix related to recurrence relations with periodic coefficients

    Zap. Nauchn. Sem. POMI, 433 (2015),  111–130
  9. Chebyshev–Koornwinder oscillator

    TMF, 175:3 (2013),  379–387
  10. Differential equations for the elementary 3-symmetric Chebyshev polynomials

    Zap. Nauchn. Sem. POMI, 398 (2012),  64–86
  11. $N$-symmetric Chebyshev polynomials in a composite model of a generalized oscillator

    TMF, 169:2 (2011),  229–240
  12. Composite model for generalized oscillator. I

    Zap. Nauchn. Sem. POMI, 374 (2010),  58–81
  13. Generalized coherent states for oscillators associated with the Charlier $q$-polynomials

    TMF, 155:1 (2008),  39–46
  14. Coherent states for generalized oscillator in finite-dimensional Hilbert space

    Zap. Nauchn. Sem. POMI, 335 (2006),  75–99
  15. Generalized coherent states for oscillators connected with Meixner and Meixner–Pollachek polynomials

    Zap. Nauchn. Sem. POMI, 317 (2004),  66–93
  16. Generalized coherent states for $q$-oscillator connected with discrete $q$-Hermite polynomials

    Zap. Nauchn. Sem. POMI, 308 (2004),  48–66
  17. Generalized coherent states: a novel approach

    Zap. Nauchn. Sem. POMI, 300 (2003),  65–71
  18. On construction of universal twist element from R-matrix

    Zap. Nauchn. Sem. POMI, 291 (2002),  228–244
  19. Unified quantization of three-dimensional bialgebras

    Zap. Nauchn. Sem. POMI, 291 (2002),  169–184
  20. Barut–Girardello Coherent states for the Gegenbauer oscillator

    Zap. Nauchn. Sem. POMI, 291 (2002),  43–63
  21. Coherent states for the Legendre oscillator

    Zap. Nauchn. Sem. POMI, 285 (2002),  39–52
  22. On the structure of coboundary $R$-matrices for classical series

    Zap. Nauchn. Sem. POMI, 269 (2000),  193–206
  23. Symmetries related to Yang–Baxter equation and reflection equations

    Zap. Nauchn. Sem. POMI, 269 (2000),  180–192
  24. Dynamic systems related to the Cremmer–Gervais $R$-matrix

    TMF, 116:1 (1998),  101–112
  25. $q$-Bosonization of orthogonal and symplectic quantum groups

    Zap. Nauchn. Sem. POMI, 245 (1997),  166–172
  26. Representations of the deformed oscillator algebra under different choices of generators

    Zap. Nauchn. Sem. POMI, 245 (1997),  80–106
  27. Gauss decomposition for quantum groups and supergroups

    Zap. Nauchn. Sem. POMI, 224 (1995),  155–177
  28. Quantum Heisenberg group and reflection equations. I

    Zap. Nauchn. Sem. POMI, 209 (1994),  28–36
  29. $q$-Hermite polynomials and $q$-oscillators

    Zap. Nauchn. Sem. POMI, 199 (1992),  81–90
  30. Deformed oscillators and their applications

    Zap. Nauchn. Sem. LOMI, 189 (1991),  37–74
  31. Calculation of Berry's phase in squeezed states

    Zap. Nauchn. Sem. LOMI, 169 (1988),  51–59
  32. Spontaneously broken phase and Galilei transformations in Weyl systems

    Zap. Nauchn. Sem. LOMI, 145 (1985),  72–85
  33. Self-adjoint phase operator

    TMF, 38:1 (1979),  58–70
  34. Euclidean-covariant representations of the nonrelativisitic current group

    TMF, 20:2 (1974),  170–176
  35. Invariant Weyl systems that are not $U$-cyclic (note on Hegerfeldt and Melsheimer's paper)

    TMF, 15:2 (1973),  221–226
  36. $O$-invariant $U$-cyclic Weyl systems

    TMF, 15:1 (1973),  70–77
  37. The problem of symmetry breaking and in variance of the vacuum in quantum field theory

    UFN, 102:4 (1970),  587–620

  38. Kulish Petr Petrovich

    Zap. Nauchn. Sem. POMI, 317 (2004),  7–10


© Steklov Math. Inst. of RAS, 2025