RUS  ENG
Full version
PEOPLE

Gorbatsevich Vladimir Vitalyevich

Publications in Math-Net.Ru

  1. On low dimensional bases of natural bundles for compact homogeneous spaces

    Izv. RAN. Ser. Mat., 88:6 (2024),  118–138
  2. On decompositions and transitive actions of nilpotent Lie groups

    Izv. Vyssh. Uchebn. Zaved. Mat., 2024, no. 4,  3–14
  3. On the fibre structure of compact homogeneous spaces

    Izv. RAN. Ser. Mat., 87:6 (2023),  49–75
  4. On Some Classes of Bases in Finite-Dimensional Lie Algebras

    Mat. Zametki, 114:2 (2023),  203–211
  5. On maximal extensions of nilpotent Lie algebras

    Funktsional. Anal. i Prilozhen., 56:4 (2022),  25–34
  6. Foundations of Lie theory for $\mathcal E$-structures and some of its applications

    Izv. RAN. Ser. Mat., 86:2 (2022),  34–61
  7. Isomorphism and diffeomorphism of semisimple Lie Groups

    Izv. Vyssh. Uchebn. Zaved. Mat., 2022, no. 3,  3–12
  8. On the Isomorphism and Diffeomorphism of Compact Semisimple Lie Groups

    Mat. Zametki, 112:3 (2022),  384–390
  9. On the Killing form on Lie algebras

    Izv. Vyssh. Uchebn. Zaved. Mat., 2021, no. 4,  48–68
  10. Some Properties of Homogeneous $\mathcal E$-Manifolds

    Mat. Zametki, 109:5 (2021),  691–704
  11. Locally transitive analytic actions of Lie groups on compact surfaces

    Mat. Sb., 212:4 (2021),  45–75
  12. Polynomial realizations of finite-dimensional Lie algebras

    Funktsional. Anal. i Prilozhen., 54:2 (2020),  25–34
  13. Letter to the editors

    Izv. RAN. Ser. Mat., 84:6 (2020),  223
  14. On the topology of non-compact simply connected homogeneous manifolds

    Izv. RAN. Ser. Mat., 84:5 (2020),  20–39
  15. Some properties of almost abelian Lie algebras

    Izv. Vyssh. Uchebn. Zaved. Mat., 2020, no. 4,  26–42
  16. Computational Experiments with Nilpotent Lie Algebras

    Mat. Zametki, 107:1 (2020),  23–31
  17. Dual and almost-dual homogeneous spaces

    Izv. RAN. Ser. Mat., 83:1 (2019),  25–58
  18. On stationary subgroups of compact homogeneous spaces

    Izv. Vyssh. Uchebn. Zaved. Mat., 2019, no. 4,  36–51
  19. Foundations of a theory of dual Lie algebras

    Izv. Vyssh. Uchebn. Zaved. Mat., 2018, no. 4,  33–48
  20. Extension of transitive actions of Lie groups

    Izv. RAN. Ser. Mat., 81:6 (2017),  86–99
  21. Lie Algebras with Abelian Centralizers

    Mat. Zametki, 101:5 (2017),  690–699
  22. On geometry of solutions to approximate equations and their symmetries

    Ufimsk. Mat. Zh., 9:2 (2017),  40–55
  23. On the homotopy structure of compact complex homogeneous manifolds

    Izv. RAN. Ser. Mat., 80:2 (2016),  47–62
  24. On liezation of the Leibniz algebras and its applications

    Izv. Vyssh. Uchebn. Zaved. Mat., 2016, no. 4,  14–22
  25. Compact homogeneous spaces of reductive Lie groups and spaces close to them

    Mat. Sb., 207:3 (2016),  31–46
  26. The automorphism groups of compact homogeneous spaces

    Sibirsk. Mat. Zh., 57:4 (2016),  721–745
  27. On the maximal finite-dimensional Lie algebras with given nilradical

    Izv. Vyssh. Uchebn. Zaved. Mat., 2015, no. 2,  35–44
  28. Nilpotent sums of lie algebras, and applications

    Sibirsk. Mat. Zh., 56:2 (2015),  351–367
  29. Sub-Riemannian geometries on compact homogeneous spaces

    Izv. RAN. Ser. Mat., 78:3 (2014),  35–52
  30. On Invariant Sub-Riemannian Structures on Compact Homogeneous Spaces with Discrete Stationary Subgroup

    Mat. Zametki, 95:6 (2014),  821–829
  31. On the frames of spaces of finite-dimensional Lie algebras of dimension at most 6

    Mat. Sb., 205:5 (2014),  23–36
  32. Classification of complex simply connected homogeneous spaces of dimensions not greater than 2

    Izv. Vyssh. Uchebn. Zaved. Mat., 2013, no. 3,  16–32
  33. Invariant distributions on compact homogeneous spaces

    Mat. Sb., 204:12 (2013),  15–30
  34. On quasicompact homogeneous spaces

    Sibirsk. Mat. Zh., 54:2 (2013),  303–319
  35. Compact homogeneous manifolds of dimension at most 7 up to a finite covering

    Izv. RAN. Ser. Mat., 76:4 (2012),  27–40
  36. On Compact Aspherical Homogeneous Manifolds of Dimension $\le7$

    Mat. Zametki, 92:2 (2012),  202–215
  37. On the intersection of irreducible components of the space of finite-dimensional Lie algebras

    Mat. Sb., 203:7 (2012),  57–78
  38. Real subalgebras in the matrix Lie algebra $M(2,\mathbf C)$

    Izv. Vyssh. Uchebn. Zaved. Mat., 2010, no. 8,  30–35
  39. On Diverse Forms of Homogeneity of Lie Algebras

    Mat. Zametki, 88:2 (2010),  178–192
  40. Some properties of the space of $n$-dimensional Lie algebras

    Mat. Sb., 200:2 (2009),  31–60
  41. Compact solvmanifolds of dimension at most 4

    Sibirsk. Mat. Zh., 50:2 (2009),  300–319
  42. Stable Cohomology of Compact Homogeneous Spaces

    Mat. Zametki, 83:6 (2008),  803–814
  43. Invariant intrinsic Finsler metrics on homogeneous spaces and strong subalgebras of Lie algebras

    Sibirsk. Mat. Zh., 49:1 (2008),  43–60
  44. Compact Homogeneous Spaces and Their Generalizations

    CMFD, 22 (2007),  38–72
  45. On the topology of the natural bundle for compact homogeneous spaces

    Izv. RAN. Ser. Mat., 71:3 (2007),  15–44
  46. Tensor Products of Algebras and Their Applications to the Construction of Anosov Diffeomorphisms

    Mat. Zametki, 82:6 (2007),  811–821
  47. Transitive Lie groups on $S^1\times S^{2m}$

    Mat. Sb., 198:9 (2007),  43–58
  48. Antinilpotent Lie Algebras

    Mat. Zametki, 78:6 (2005),  803–812
  49. On algebraic Anosov diffeomorphisms on nilmanifolds

    Sibirsk. Mat. Zh., 45:5 (2004),  995–1021
  50. Symplectic structures and cohomologies on some solvmanifolds

    Sibirsk. Mat. Zh., 44:2 (2003),  322–342
  51. On isometries of some Riemannian Lie groups

    Izv. RAN. Ser. Mat., 66:4 (2002),  27–46
  52. On the Properties of Plesio-Uniform Subgroups in Lie Groups

    Mat. Zametki, 69:3 (2001),  338–345
  53. Transitive isometry groups of aspheric Riemannian manifolds

    Sibirsk. Mat. Zh., 42:6 (2001),  1244–1258
  54. On the triviality of a natural fibration of some compact homogeneous spaces

    Izv. Vyssh. Uchebn. Zaved. Mat., 2000, no. 1,  15–19
  55. Thurston geometries on bases of bundles of homogeneous spaces

    Izv. RAN. Ser. Mat., 63:4 (1999),  37–58
  56. Quantitative aspect of the stabilization theorem

    Mat. Zametki, 64:5 (1998),  788–791
  57. On the level of some solvable Lie algebras

    Sibirsk. Mat. Zh., 39:5 (1998),  1013–1027
  58. On the envelopes of Abelian subgroups in connected Lie groups

    Mat. Zametki, 59:2 (1996),  200–210
  59. A Seifert bundle for a plesiocompact homogeneous space

    Sibirsk. Mat. Zh., 37:2 (1996),  301–313
  60. Anticommutative finite-dimensional algebras of the first three levels of complexity

    Algebra i Analiz, 5:3 (1993),  100–118
  61. On the double normalizer of the stable subalgebra of a plesiocompact homogeneous space

    Sibirsk. Mat. Zh., 34:3 (1993),  62–69
  62. Contractions and degenerations of finite-dimensional algebras

    Izv. Vyssh. Uchebn. Zaved. Mat., 1991, no. 10,  19–27
  63. The structure of homogeneous spaces with a finite invariant metric

    Izv. Vyssh. Uchebn. Zaved. Mat., 1991, no. 7,  66–68
  64. A completeness criterion of subgroups of finite covolume in a Lie group

    Mat. Zametki, 50:6 (1991),  52–56
  65. Plesio-compact homogeneous spaces. II

    Sibirsk. Mat. Zh., 32:2 (1991),  13–25
  66. Structure of Lie groups and Lie algebras

    Itogi Nauki i Tekhniki. Ser. Sovrem. Probl. Mat. Fund. Napr., 41 (1990),  5–253
  67. Plesiocompact homogeneous spaces

    Sibirsk. Mat. Zh., 30:2 (1989),  61–72
  68. Some classes of homogeneous spaces that are close to compact spaces

    Dokl. Akad. Nauk SSSR, 303:4 (1988),  785–788
  69. Discrete subgroups of Lie groups

    Itogi Nauki i Tekhniki. Ser. Sovrem. Probl. Mat. Fund. Napr., 21 (1988),  5–120
  70. Lie groups of transformations

    Itogi Nauki i Tekhniki. Ser. Sovrem. Probl. Mat. Fund. Napr., 20 (1988),  103–240
  71. Curvature of a Riemannian metric on compact homogeneous manifolds

    Mat. Zametki, 43:2 (1988),  169–177
  72. On the number of Lie groups containing uniform lattices isomorphic to a given group

    Izv. Akad. Nauk SSSR Ser. Mat., 51:3 (1987),  517–533
  73. On Lie groups that are transitive on compact three-dimensional forms of reductive Lie groups

    Izv. Vyssh. Uchebn. Zaved. Mat., 1987, no. 6,  32–37
  74. Lie groups with lattices and their properties

    Dokl. Akad. Nauk SSSR, 287:1 (1986),  33–37
  75. The construction of a simply connected Lie group with a given Lie algebra

    Uspekhi Mat. Nauk, 41:3(249) (1986),  177–178
  76. Compact homogeneous spaces with a semisimple fundamental group. II

    Sibirsk. Mat. Zh., 27:5 (1986),  38–49
  77. A criterion for the existence of a natural fibering for a compact homogeneous manifold

    Mat. Zametki, 35:2 (1984),  277–285
  78. A class of compact homogeneous spaces

    Izv. Vyssh. Uchebn. Zaved. Mat., 1983, no. 9,  18–21
  79. Some homotopy properties of the natural fibration for compact homogeneous manifolds

    Dokl. Akad. Nauk SSSR, 264:3 (1982),  525–528
  80. Two fibrations of a compact homogeneous space and some applications

    Izv. Vyssh. Uchebn. Zaved. Mat., 1981, no. 6,  73–75
  81. On a fibering of a compact homogeneous space

    Tr. Mosk. Mat. Obs., 43 (1981),  116–141
  82. On the topological structure of compact homogeneous spaces with soluble fundamental group

    Uspekhi Mat. Nauk, 36:2(218) (1981),  181–182
  83. Compact homogeneous spaces with a semisimple fundamental group

    Sibirsk. Mat. Zh., 22:1 (1981),  47–67
  84. The topological structure of compact homogeneous manifolds

    Uspekhi Mat. Nauk, 35:3(213) (1980),  168–171
  85. On the structure of compact homogeneous spaces

    Dokl. Akad. Nauk SSSR, 249:2 (1979),  274–277
  86. Splittings of Lie groups and their application to the study of homogeneous spaces

    Izv. Akad. Nauk SSSR Ser. Mat., 43:6 (1979),  1227–1258
  87. On topological properties of compact homogeneous spaces

    Dokl. Akad. Nauk SSSR, 239:5 (1978),  1033–1036
  88. On compact homogeneous spaces of dimension 5 and higher

    Uspekhi Mat. Nauk, 33:3(201) (1978),  161–162
  89. On Lie groups, transitive on compact solvmanifolds

    Izv. Akad. Nauk SSSR Ser. Mat., 41:2 (1977),  285–307
  90. The classification of four-dimensional compact homogeneous spaces

    Uspekhi Mat. Nauk, 32:2(194) (1977),  207–208
  91. Three-dimensional homogeneous spaces

    Sibirsk. Mat. Zh., 18:2 (1977),  280–293
  92. On aspherical homogeneous spaces

    Mat. Sb. (N.S.), 100(142):2(6) (1976),  248–265
  93. On the classification of homogeneous spaces

    Dokl. Akad. Nauk SSSR, 216:5 (1974),  968–970
  94. On a class of decompositions of semisimple Lie groups and algebras

    Mat. Sb. (N.S.), 95(137):2(10) (1974),  294–304
  95. Generalized Lyapunov theorem on Mal'tsev manifolds

    Mat. Sb. (N.S.), 94(136):2(6) (1974),  163–177
  96. Lattices in solvable Lie groups and deformations of homogeneous spaces

    Mat. Sb. (N.S.), 91(133):2(6) (1973),  234–252
  97. Discrete subgroups of solvable Lie groups of type $(E)$

    Mat. Sb. (N.S.), 85(127):2(6) (1971),  238–255

  98. Letter to the Editor

    Mat. Zametki, 115:1 (2024),  156
  99. Arkadii L'vovich Onishchik (obituary)

    Uspekhi Mat. Nauk, 75:4(454) (2020),  195–206
  100. Arkadii L'vovich Onishchik (on his 70th birthday)

    Uspekhi Mat. Nauk, 58:6(354) (2003),  193–200
  101. Поправки к статье “О классификации однородных пространств” (ДАН, т. 216, № 5, 1974 г.)

    Dokl. Akad. Nauk SSSR, 220:3 (1975),  10


© Steklov Math. Inst. of RAS, 2025